
Schreier G, Hayn D, Ammenwerth E (Hrsg.). Tagungsband der eHealth2010: Health Informatics meets eHealth.
6.-7. Mai 2010, Wien. OCG Books Nr. 264. Österreichische Computer Gesellschaft. 2010

 207

A FUZZY ARDEN SYNTAX COMPILER

Fehre K1, 2, Mandl H2, Adlassnig K-P1, 2

Abstract
The Arden Syntax for Medical Logic Systems is a standard for clinical knowledge representation,
maintained by the Health Level Seven (HL7) organization and approved by the American National
Standards Institute (ANSI). It offers a wide range of syntactical constructs (various forms of numer-
ical, logical, temporal operators, conditions, …), each of which crisply defines a specific unit of
clinical knowledge (yes-no evaluations). As medical conditions and conclusions cannot always be
formulated in a strict manner, methods of fuzzy set theory and logic are used to represent uncer-
tainty, which is usually a part of practical clinical knowledge. Based on the extension of Arden
Syntax to Fuzzy Arden Syntax by Vetterlein et al. (on the basis of Tiffe’s earlier extension), we im-
plemented a Fuzzy Arden Syntax compiler which is able to process a fully fuzzified version of Ar-
den Syntax. We describe the compiler, its components (lexer, parser, and synthesis), and discuss its
implementation.

Keywords – Clinical decision support, clinical knowledge representation, Arden syntax, fuzzy
logic, compiler construction

1. Introduction

One of the main goals of health informatics, e-health, and medical computer sciences is to improve
the quality of health care and avoid medical error. Clinical decision support systems (CDSSs) are
tools that help to achieve these aims. The purpose of the systems is to provide diagnostic and thera-
peutic advice, alerts and reminders, or serve as disease and therapy management programs. Arden
Syntax for Medical Logic Systems, maintained by the Health Level Seven (HL7) organization [1]
and approved by the American National Standards Institute (ANSI), is a standardized representa-
tion form of clinical knowledge and an excellent technical point of departure to build CDSSs. An
Arden Syntax knowledge base consists of a set of units known as medical logic modules (MLMs),
each of which contains sufficient logic for a single medical decision. An MLM is partitioned into
four categories: maintenance, library, resources, and knowledge. Maintenance, resources, and li-
brary include maintenance of the knowledge base, change control, localized strings, and explanato-
ry information while the knowledge category includes implementable clinical information.

1 Section for Medical Expert and Knowledge-Based Systems, Center for Medical Statistics, Informatics, and Intelligent
Systems, Medical University of Vienna, Austria
2 Medexter Healthcare GmbH, Vienna, Austria

Schreier G, Hayn D, Ammenwerth E (Hrsg.). Tagungsband der eHealth2010: Health Informatics meets eHealth.
6.-7. Mai 2010, Wien. OCG Books Nr. 264. Österreichische Computer Gesellschaft. 2010

 208

A CDSS based on Arden Syntax checks the accessible computerized medical data with regard to
specific conditions and reacts accordingly. However, medical data do not always permit an unequi-
vocal statement as to whether a specific condition is fulfilled or not. Sometimes, preconditions of
an implication are rather approximate and not entirely fulfilled. Fuzzy set theory and logic is an
approach to solve this conflict.

Zadeh’s article in 1965 [9] is seen as the starting point for the development of fuzzy set theory and
logic. In fuzzy logic, a conclusion is permitted, provided that the result is weakened with regard to
the content of its condition. Based on these considerations, Fuzzy Arden Syntax as a full extension
(generalization) of Arden Syntax was first proposed by Tiffe in his Ph.D. thesis [6]. This proposal
of Fuzzy Arden Syntax was taken as a basis, adapted to the interim advancements of Arden Syntax,
and developed further by Vetterlein et al. [7]. For comparison we refer to [7, 8]. The Fuzzy Arden
Syntax compiler we developed, programmed, and describe in this paper is based on the syntax pro-
posed by Vetterlein et al. [7].

2. Methods

We implemented a Fuzzy Arden Syntax compiler which converts a Fuzzy Arden Syntax MLM into
Java byte code runnable on an additionally implemented Fuzzy Arden Syntax engine as shown in
Figure 1.

Figure 1: Compiling and running an MLM

One of the main goals of the Arden Syntax is the ability to interchange MLMs or packages of
MLMs (whole knowledge bases) between health care institutions. To fulfill this condition, the
compiled MLMs generated by the compiler have to be as general as possible. Therefore, an addi-
tional Arden Syntax engine is needed to provide access to other MLMs, information about the sur-
rounding environment, and additional control information.

2. 1. Fuzzy Arden Syntax

The Fuzzy Arden Syntax proposed by Vetterlein et al. [7] is based on Arden Syntax, version 2.5.
As the most recent version of Arden Syntax is 2.7 [1], the compiler described in this report includes
several Arden Syntax extensions (actually from versions 2.1 to 2.7).

A compiler consists of several components: a lexical analyzer, a parser, and a synthesis component.
As the Fuzzy Arden Syntax compiler also supports former versions of Arden Syntax, the compiler
has to determine the Arden Syntax version of a provided MLM. For this purpose we developed a
rudimentary lexer-parser pair which collects this information from a given MLM.

2. 2. Lexer

A lexer, or lexical analyzer, converts a sequence of characters into a sequence of tokens. To this
end the lexer partitions a given MLM into sequences of characters and assigns symbols to the
strings according to the given language rules. Thus the lexer typifies sequences of characters. For

Schreier G, Hayn D, Ammenwerth E (Hrsg.). Tagungsband der eHealth2010: Health Informatics meets eHealth.
6.-7. Mai 2010, Wien. OCG Books Nr. 264. Österreichische Computer Gesellschaft. 2010

 209

example, the string “2 + 3” is converted into the token sequence NUMBER PLUS NUMBER. Dur-
ing the lexical analysis, the present MLM is also checked against some fundamental syntax con-
straints. For implementing such a lexer in Java, multiple generators are available. We selected
JFlex [4], because JFlex is a reliable Java tool and supports integration into our development
process.

2. 3. Parser

Following lexical analysis, the next step of the compilation process is parsing. The parser analyzes
the tokens provided by the lexer and converts the linear sequence of these into a hierarchical struc-
ture, the so-called parse tree. For example, the expression “2 + 3” is represented by a node “+” with
two leafs “2” and “3”. During this conversion, the input (the MLM) is verified according to the
syntactical and grammatical correctness as provided in the Fuzzy Arden Syntax specification. If
there are any incorrect expressions, the process of compiling is aborted and an error message is
sent. Similar to the lexer, parser generators are available. These are adjusted to automatically con-
struct parsers from a given Backus–Naur form (BNF). However, the present Arden Syntax specifi-
cation contains some shift-reduce problems (e.g., expressions like “sort time x”) and therefore the
use of a fully automated parser generator is not possible. As Arden Syntax is the foundation of
Fuzzy Arden Syntax, this also holds for Fuzzy Arden Syntax. Therefore, we had to program the
parser in a stepwise manner. In future implementations we will work closely with the HL7 Arden
Syntax Special Interest Group to solve the issues for the upcoming Arden Syntax and Fuzzy Arden
Syntax versions. Nevertheless, based on the most recent BNF for Arden Syntax we developed a
BNF for Fuzzy Arden Syntax, which will be published outside of this paper.

2. 4. Synthesis

The next phase of the compilation is synthesis. If the parse tree is successfully generated, the syn-
thesis transfers the nodes of the parse tree into Java objects. This is done by creating an instance of
a dedicated class for each occurrence of a language construct (e.g., an operator, value, or a variable)
and by storing these in a data structure according to the parse tree. For example, a value of type
number is represented by an instance of the class Arden Syntax number and subordinated to a “+”
operator which may itself be subordinated to an assignment statement, a slot, and finally to an in-
stance of the class MLM. Meanwhile, the compiler checks whether the respective MLM contains
all necessary slots and resolves special expressions like the “it” keyword. Finally, the instance of
the MLM class refers to all slots and statements in the given MLM. This instance is serialized,
stored in a file, and constitutes a compiled MLM.

2. 5. Engine

Contrary to other implementations of Arden Syntax [2, 3], we programmed an engine to read and
execute the serialized MLMs. The engine is used to coordinate communications with the surround-
ing environment. Thus, for a running MLM the engine provides the ability to evaluate curly braces
expressions, call events or other MLMs, and collect information about the system the engine is ex-
ecuted upon (e.g., local information, such as language and country). The compiled MLM is ex-
ecuted by calling the evaluation method of the MLM instance which itself evaluates all direct sub-
ordinated nodes. Furthermore, each node in the tree built by the compiler is evaluated by assessing
its direct subordinated nodes and calculating and returning the corresponding result. If required, the
engine is instructed to read data from a database or call other MLMs. Our implementation provides

Schreier G, Hayn D, Ammenwerth E (Hrsg.). Tagungsband der eHealth2010: Health Informatics meets eHealth.
6.-7. Mai 2010, Wien. OCG Books Nr. 264. Österreichische Computer Gesellschaft. 2010

 210

an interface for this engine, so that each user can adjust the engine’s properties according to his/her
needs.

2. 6. Fuzzy Arden Syntax Handling

Compared to Arden Syntax, Fuzzy Arden Syntax contains several new language elements and ex-
tensions with respect to interpretation and evaluation of language expressions. Fuzzy linguistic va-
riables and a number of the data types (fuzzy number, fuzzy time, and fuzzy duration) are new in
Fuzzy Arden Syntax.

Compiled linguistic variables and objects hold their values as a map containing the field names and
the associated values. In contrast to Arden Syntax objects, the fields of linguistic variables may
only store fuzzy data types. At present, fuzzy data types refer to piecewise linear fuzzy sets. A
fuzzy set is a mapping, assigning each element of the set a given truth value, which is a real number
from 0 to 1. Figure 2 shows examples of fuzzy sets for an underweight, normal, and overweight
body mass index (BMI).

Figure 2: Three fuzzy sets

This type of fuzzy sets may be defined by the following statements:

 underweight := Fuzzy Set (0,1),(18.5,1),(19.5,0); (1)

 normal := Fuzzy Set (18.5,0),(19.5,1),(24,1), (25,0); (2)

overweight := Fuzzy Set (24,0),(25,1); (3)

The definition of fuzzy sets by lists of point-value pairs is also used for internal representation of
these fuzzy sets. In other words, a compiled Fuzzy Arden Syntax data type has a list of point-value
pairs as its value.

According to Vetterlein et al. [7], some operators must be able to handle such fuzzy data types as
incoming parameters. These are, for example, the comparison operators in which one of its parame-
ters refers to a fuzzy and the other to a crisp data type. To facilitate this process, each input parame-
ter which refers to a fuzzy data type must provide a method, making it possible to determine the
truth value at a certain point. To illustrate such a calculation of the truth value at a given point, we
describe the algorithm in pseudo code below:

Schreier G, Hayn D, Ammenwerth E (Hrsg.). Tagungsband der eHealth2010: Health Informatics meets eHealth.
6.-7. Mai 2010, Wien. OCG Books Nr. 264. Österreichische Computer Gesellschaft. 2010

 211

INPUT an arbitrary point whose truth value should be calculated
SET lower-bound to null
FOR each fuzzy-point in the list of fuzzy-points
 IF fuzzy-point < point THEN
 SET lower-bound to fuzzy-point
 ELSE IF fuzzy-point EQUAL point THEN
 RETURN truth-value at fuzzy-point
 ELSE IF fuzzy-point > point AND lower-bound is not set THEN
 RETURN truth-value at fuzzy-point
 ELSE IF fuzzy-point > point AND lower-bound is set THEN
 calculate slope of the truth value edge between lower-bound and fuzzy-point
 RETURN (point – lower-bound) * slope + truth value at lower-bound
 END IF
END FOR

Since the data type boolean is replaced by the data type truth value in Fuzzy Arden Syntax, the
corresponding implementation will hold its value in a float variable. Furthermore, each data type
implementation will store the applicability, a truth value expressing the degree to which the main
value may be considered applicable.

A major challenge was the implementation of conditional statements such as if, conclude, or switch.
If the condition is an expression of the truth value type then, unlike previous Arden Syntax ver-
sions, Fuzzy Arden Syntax has to execute each of the conditional blocks, each with the appropriate
truth value. If the execution of a compiled MLM arrives at such a statement, the entire current vari-
able heap is copied, and the applicabilities of the contained values are manipulated accordingly. If
the conditional statement does not contain an aggregate expression, it returns a set of variable heaps
to the calling node, which evaluates all following subordinated nodes with each of the resulting
heaps. Thus, the evaluation of an MLM may provide several results that are interpreted according
to the calling instance. The arithmetic operations for variables referring to fuzzy sets are defined
and implemented according to Zadeh’s extension principle [9], provided that the corresponding
operation in the crisp case is defined as well.

3. Discussion and Conclusion

We developed a Fuzzy Arden Syntax compiler to compile the source code MLMs and a Fuzzy Ar-
den Syntax engine to execute the compiled MLMs. The compiler is a complete extension of the
existent Arden Syntax compiler which can parse all versions of Arden Syntax from 2.1 up to the
most recent version 2.7. This Arden Syntax compiler together with its corresponding engine is em-
bedded in an Arden Syntax server. The server is based on a service-oriented architecture protocol
(SOAP)-based framework for remotely calling and running compiled MLMs. In addition, we de-
veloped a Fuzzy Arden Syntax integrated development environment (IDE) to be used by an MLM
author to write, verify, compile, and test MLMs.

It should be noted that Arden Syntax is an imperative programming language which is procedural
and modular. We suggest that the Arden Syntax (and thus Fuzzy Arden Syntax) is Turing-
complete, but formal proof is yet to be obtained and will be a subject of future research. A quine
[5], named after the philosopher and logician Willard van Orman Quine (1908–2000), is the sim-
plest form of a self-replicating program. A quine prints its own code and exists for any program-
ming language that is Turing complete. The construction of a quine for Arden Syntax is trivial. The
presentation of a quine would exceed the scope of this report.

Schreier G, Hayn D, Ammenwerth E (Hrsg.). Tagungsband der eHealth2010: Health Informatics meets eHealth.
6.-7. Mai 2010, Wien. OCG Books Nr. 264. Österreichische Computer Gesellschaft. 2010

 212

4. References

[1] HEALTH LEVEL 7, Arden Syntax for Medical Logic Systems, Version 2.7. Health Level 7, Ann Arbor, MI, 2008.

[2] HRIPCSAK, G., CIMINO, J.J., JOHNSON, S.B., CLAYTON, P.D., The Columbia-Presbyterian Medical Center
Decision-Support System as a Model for Implementing the Arden Syntax, in: P. D. Clayton (Ed.) Proceedings of the
Fifteenth Annual Symposium on Computer Applications in Medical Care, McGraw-Hill, New York, 248–252, 1992.

[3] JENDERS, R.A., HRIPCSAK, G., SIDELI, R.V., DUMOUCHEL, W., ZHANG, H., CIMINO, J.J., JOHNSON,
S.B., SHERMAN, E.H., CLAYTON, P.D, Medical Decision Support: Experience with Implementing the Arden Syntax
at the Columbia-Presbyterian Medical Center, in Proc AMIA Symp 1995, 169–173, 1995.
JFlex 1.4.3. Available at http://www.jflex.de (last accessed: 10 January 2010).

[4] QUINE, W. V, On Decidability and Completeness. Synthése 7:441–446, 1949.

[5] TIFFE, S., Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified
Arden Syntax, Ph.D. Thesis, Technical University Vienna, Vienna 2003.

[6] VETTERLEIN, T., MANDL, H., ADLASSNIG, K.-P., Vorschläge zur Spezifikation der Programmiersprache
Fuzzy Arden Syntax (Proposal of a specification of the programming language Fuzzy Arden Syntax – in German).
Technical Report, Medical University of Vienna, Vienna, 2008. Available at http://www.meduniwien.ac.at/user/
thomas.vetterlein/articles/FuzzyArdenSpezif.pdf (last accessed: 10 January 2010).

[7] VETTERLEIN, T., MANDL, H., ADLASSNIG, K.-P., Fuzzy Arden Syntax: A Fuzzy Programming Language for
Medicine. Artificial Intelligence in Medicine, doi:10.1016/j.artmed.2010.01.003, 2010.

[8] ZADEH, L. A., Fuzzy Sets. Information and Control 8:338–353, 1965.

Corresponding Author
Karsten Fehre
Section for Medical Expert and Knowledge-Based Systems
Center for Medical Statistics, Informatics, and Intelligent Systems
Medical University of Vienna
Spitalgasse 23, BT 88.03, A-1090 Vienna
Email: karsten.fehre@meduniwien.ac.at

