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Abstract

Expert systems for medical applications have to deal
with medical concepts such as “normal range”, “elevated”,
or “reduced”. These concepts, although backed by a pro-
found medical background based on reference intervals, are
defined manually by physicians using interval-based repre-
sentation. This approach is usually not feasible in large-
scale applications. In the present study we describe a
method to generate fuzzy-logic-based predicates founded on
historic medical data, using a combination of established
statistical methods and cluster analyses to generate con-
cepts that correspond to established laboratory standards
and the physician’s interpretation. We also describe visual-
ization techniques which help the physician to analyze and
adapt the results according to clinical needs. Finally, a case
study using actual laboratory data from 562 hepatitis pa-
tients is presented.

1 Introduction

Physicians’ definitions of concepts such as “normal
range”, “elevated”, or “reduced” are based on a large body
of background knowledge. An alanine aminotransferase
(GPT) level of 43 U/l may, for instance, be “normal” for an
adult man, but may well be termed “elevated” for a young
woman. However, apart from sex and age, several factors
significantly influence the interpretation of laboratory data,
such as the patient’s race, the time of measurement or ad-
ditional medication, to name a few. Due to these individual
influences it is not always possible to clearly state whether
a measurement in an individual patient is still in the normal
range or is already pathological. A comprehensive appraisal
of the patient is needed to resolve this problem.

In expert systems, medical knowledge is typically rep-
resented in terms of rules which describe the relationships
between medical entities for a general population. When

physicians are asked to formulate rules for such an ex-
pert system, they frequently use imprecise medical concepts
such as “mild fever” to indicate the individual context of
these expressions. In order to incorporate these vague con-
cepts into medical expert systems, methods to describe im-
precise expressions and draw further (logical) conclusions
based on these expressions are needed.

As a possible solution to this problem, we present a novel
approach based on historical medical data to automatically
define the underlying (imprecise) expressions using fuzzy
predicates. This is done in accordance with the recommen-
dations on reference intervals to define normal ranges is-
sued by the International Federation of Clinical Chemistry’s
(IFCC) [10, 11] and by the use of a clustering technique to
define application-dependent predicates for values outside
the normal range. This is done to ensure compatibility with
established standards and enable physicians to interpret the
data. A case study in which this method was applied to a
set of 562 case records of hepatitis patients is presented.

The concept of reference intervals was introduced in a
series of publications by the IFCC in 1987 [10, 11]. It is
currently well established and widely used in laboratory
medicine. In order to provide a feasible alternative to the
concept of normal values (which is an abstract concept of
the ideal state of health), a theoretical concept and a set of
recommendations for collecting reference values were pre-
sented. Since this time, several modifications and exten-
sions have been proposed, such as techniques to identify
outliers [14] or bootstrapping methods to reduce the size of
confidence intervals [3]. The methods recommended by the
IFCC have been implemented in H.E. Solberg’s RefVal pro-
gram [12, 13].

Reference intervals are, however, not always a good
choice as decision boundaries. Moreover, due to intra-
individual differences, a smooth transition from “normal”
to “pathological” states would be desirable. This urges one
to define these predicates using fuzzy logic, where a fuzzy
predicate u in F describes the degree of compatibility of u



with the (medical) concept F . Mathematically, u in F is
computed using the membership function µS(x) 7→ [0, 1]
of an associated fuzzy set S.

2 Previous Work

Previous work on this subject has been focused on two
areas. First, extensive efforts have been made in the med-
ical community to define (crisp) decision boundaries. Sec-
ondly, for several years now, the data-mining community
has been developing methods to determine optimal splits. In
the medical community, fuzzy logic approaches have been
mainly used in expert systems in which the sets are defined
manually. The data-mining community is also using ap-
proaches in which the underlying fuzzy sets are defined au-
tomatically. This is not surprising in view of the fact that the
underlying concepts are typically well defined in medicine.
In most other applications, the semantics of the predicates
is defined in a problem-specific manner.

2.1 Defining Decision Boundaries

The use of reference intervals is well established in lab-
oratory medicine. They are, as mentioned earlier, not al-
ways a good choice as decision boundaries. Therefore, re-
ceiver operating characteristics (ROC) curves are used to
determine the optimal decision point. As the actual deci-
sion boundary is usually defined manually by a domain ex-
pert, it is possible to achieve an optimal balance between the
sensitivity and specificity of the test. Various supervised
methods, such as the minimum description length (MDL)
of Fayyad and Irani [2], have been proposed to determine
the optimal splitting point automatically. However, it is
common practice to define crisp decision boundaries, which
gives rise to a number of practical problems [7].

2.2 Defining Linguistic Variables

The simplest approach for defining fuzzy sets automati-
cally is to form a partition for each dimension and distribute
the data evenly over the range (equi-distance binning) or
to define the sets such that all have the same cardinality
(equi-frequency binning). Although these approaches are
sufficient for basic calculations, they are associated with
significant limitations in terms of semantic soundness and
accuracy. Several approaches to fit the fuzzy sets to the
given training data have been used to overcome these limita-
tions [1, 4, 8]. Although the results of these two approaches
are promising, the resulting fuzzy sets do not always di-
rectly correspond to linguistic expression.

The work presented in this paper is based on a study pub-
lished by Schürz and Adlassnig [9]. They used a purely sta-
tistical approach together with decision rules to construct

fuzzy sets for medical concepts. We enhanced this approach
by using a more sophisticated definition of fuzzy sets for
pathological results and by introducing enhanced visualiza-
tion techniques.

3 Generation of Fuzzy Predicates

When defining linguistic variables for medical concepts,
we start with the foremost concept, which is to define the
fuzzy predicate for “normal” in close concurrence with the
specifications of the Industrial Mathematics Competence
Center (IMCC). We then define the concepts of reduced
and elevated, below and above normal, respectively. Op-
tionally, concepts for highly elevated and very highly ele-
vated are defined using an agglomerative clustering tech-
nique.

3.1 Mathematical Formulation

We define fuzzy sets as piecewise linear functions ac-
cording to the following formula:

µF (x) =


x−cL+wL

wL
if cL − wL ≤ x ≤ cL

1 if cL < x < cU
cU+wU−x

wU
if cU ≤ x ≤ cU + wU

0 otherwise

, (1)

where cL and cU define the ranges in which the membership
function is one, and wL and wU are the width of the fuzzy
set on the lower and upper bound, respectively. Other types
such as bell-shaped or tri-cubic fuzzy sets might be used
accordingly.

3.2 Data Preparation

To obtain a small overlap of normal and pathological re-
sults, the data should ideally be split into subgroups. We
use Lahti et al.’s approach [5, 6] to identify reasonable
subgroups with different characteristics (e.g., male/female,
child/adult, etc.). This minimizes the overlap of the result-
ing fuzzy sets without introducing unnecessary complexity.
Reducing the vagueness in the underlying concepts eventu-
ally enhances the expressiveness of the final decision model.
The criteria to determine whether a set should be split into
two subgroups are summarized as follows: “If at least one
of the four proportions of the subgroups outside the common
reference limits exceeds or is equal to 4.1%, or lies below
or is equal to 0.9%, partitioning is recommended. In all
other cases, the common reference limits could be used for
both subgroups. This rule is applicable to both Gaussian
and non-Gaussian distributions.” [5].

To assist physicians in reviewing the data, the latter
should be checked for possible outliers. Although no com-
pletely satisfactory method has yet been presented [14],



we use the Dixon test—as recommended by the National
Committee for Clinical Laboratory Standards (NCCLS)—
to identify the most likely outliers. Potential outliers should
be carefully reviewed by physicians before finally remov-
ing them from the data set. The Dixon test is as follows:
let R = max (X)−min(X) be the range of the values and
let D be the absolute difference between the most extreme
(largest or smallest) value and the next most extreme value.
If the ratio D/R exceeds 1/3, the extreme value in question
is deleted.

3.3 Finding the Normal Range

When defining the fuzzy membership function µnormal

identifying for every measured point the degree of compat-
ibility with the medical concept “normal”, one should ob-
tain a value of one when all patients whose laboratory data
demonstrate this value have no pathology (with respect to
this measurement), and a membership degree of zero when
all patients with this value definitely show pathological re-
sults. Intermediate values reflect the vagueness and individ-
uality of normality. It should be emphasized that these are
graded truth values rather than probabilities or possibilities
because the exact measurement is known but its belonging
to the medical concept under consideration is gradual. This
is especially important when drawing logical conclusions
with such predicates in decision support or expert systems.

We define the kernel of µnormal, i.e., the range of val-
ues definitely being “normal”, as the 95% confidence in-
terval of the reference group, in accordance with the rec-
ommendations of the IFCC [11] in order to ensure highest
concordance with the established meaning of the concept.
The support of µnormal is defined by the minimum and the
maximum values of the pre-processed data set (i.e., after
removing outliers). The final fuzzy set is then defined by
interpolating between these limits. According to Equ. (1),
µnormal is then defined using the following parameters:

cnormal
L = q2.5(XR)

cnormal
U = q97.5(XR) (2)

wnormal
L = q2.5(XR)−min(XR)

wnormal
U = max (XR)− q97.5(XR)

XR being the data of the reference group.

3.4 Defining Standard Predicates for Val-
ues Outside the Normal Range

Having defined the fuzzy predicate “normal” already
suffices to define predicates for the concepts “reduced” and
“elevated”. They can easily be defined by mirroring the
lower and upper limits of the “normal” predicate, respec-
tively; i.e., the new fuzzy set is constructed using Equ. (1)

with the parameters:

celevatedL = cnormal
U + wnormal

U (3)

welevated
L = wnormal

U

The right margin of the fuzzy set is either defined as open
or is limited by the upper bounds of the distribution of the
joined data set X:

celevatedU = q97.5(X) (4)

welevated
U = max (X)− q97.5(X)

For the fuzzy predicate “reduced” the parameters are de-
fined accordingly.

3.5 Defining Additional Predicates for
Values Outside the Elevated and Re-
duced Ranges

The existence of further information within the labora-
tory values which might be of interest to the physician (e.g.,
to distinguish between different diseases) gives rise to the
need for a finer distinction within pathological values. In
practice, this refinement is based on a distinction between
different groups of samples. Usually data from patients with
different diagnoses are used.

The basic concept underlying the following approach is
to identify intervals which allow further distinction, but also
keep the fuzzy sets well distributed. In the following we
will restrict ourselves to further differentiation of elevated
values because this is sufficient in many cases. The same
approach can be used for reduced values. The potential lim-
its are determined by collecting the maxima and the 97.5%
quantiles of all diseases in accordance with the definition of
the “normal” concept. Although it would be possible to use
an optimization method involving a special cost function to
determine the optimal shape of the fuzzy sets, we decided
in favor of this traditional approach in order to ensure com-
patibility with other clinical definitions.

Specifically, the approach is as follows: first the 97.5%
quantile and the corresponding maxima are computed for
all diseases and added to a list B = {b1, . . . , bn}. Then
the number of cases ci = |{x ∈ X | max (XR) < x <=
bi}| above the maxima of the normal range and below the
according bi values are counted and added to a list C. Next,
the elements ci ≤ 2 are removed from C together with the
corresponding bi’s from B. The remaining elements in B
and in C are then used to perform a Ward clustering [15] to
identify groups within these values.

Ward clustering is an agglomerative clustering method.
Each cluster i is characterized by its center bi and a counter
ci, indicating the number of samples covered. The distance



of two clusters i and j is then defined as follows:

dWARD(i, j) =
{

0 if ci = cj = 0
cicj

ci+cj
d(bi, bj) otherwise (5)

In each step, the two closest clusters are merged. The new
cluster center is then defined as the weighted average of the
two cluster centers:

bk =
cibi + cjbj
ci + cj

(6)

ck = ci + cj

By tracking the so called Ward index, it is possible to obtain
a degree of likelihood for each number of clusters. Assum-
ing it and jt to be the two clusters merged in the t-th step,
the Ward index is computed as follows:

I(t) =
1
|B|

dWARD(it−1, jt−1)− dWARD(it, jt)
dWARD(it−2, jt−2)− dWARD(it−1, jt−1)

(7)

The Ward index (7) is then used to decide how many
predicates outside the normal range will be defined. Usu-
ally physicians have a clear understanding as to whether
predicates besides normal, elevated, and reduced should be
defined. In our approach we used the Ward index to decide
whether two or three predicates should be defined for these
values.

As Ward clustering is an agglomerative clustering tech-
nique, it joins clusters until only one single cluster remains.
By knowing the number of clusters, this agglomeration pro-
cess can be determined at the desired level. Each cluster
is then uniquely characterized by its largest member. This
value is then used together with its corresponding maxi-
mum/97.5% quantile to construct the upper bound of the
corresponding fuzzy set. The lower bound of the set is con-
structed by mirroring the next smaller set. This approach
ensures that close decision boundaries are merged, while a
finer differentiation of the final decision is still supported.

3.6 Visualization

When computing fuzzy sets for well established terms, it
is important to incorporate the possibility of user feedback.
As validating all results on a numerical basis can be a cum-
bersome task, an efficient interface is required. We combine
different visualization techniques to enable the user to com-
prehend all aspects of his/her decision.

As mentioned previously, physicians use sensitivity and
specificity to measure the performance of a given test. Typ-
ically, ROC curves are employed to visualize this informa-
tion. Although ROC curves provide a good overview of the
situation, they are not optimal when additional information
has to be visualized. Therefore we use plots in which sensi-
tivity and specificity is plotted against the domain range and
histograms and the computed fuzzy sets are also shown.

Typically, two plots are used to illustrate the results and
guide the physician when modifying the set boundaries. If
the data have been split into subgroups, individual plots for
subgroups are presented. An example is shown in Fig. 1.
As this parameter has significantly different reference inter-
vals for men and women, we distinguished between these
two groups of patients when computing the respective pred-
icates. The fuzzy set defined for the normal range is shown
in the left plots, while the predicates for elevated and highly
elevated are shown in the right plots.

In the first plot the “normal” range together with a his-
togram plot is shown. The histogram is plotted in two col-
ors: red for the reference group and gray for groups with
diseased patients. This enables the physicians to easily
grasp the distribution of parameters for the reference popu-
lation and the general population. Furthermore, sensitivity
and specificity are plotted as blue lines over the domain to
visualize the trade-off between coverage and accuracy. Fi-
nally, the membership functions of the fuzzy sets are shown.

For the second plot which covers the entire domain, we
decided to use a logarithmic scale because many distribu-
tions have a very long tail. The class distributions are visu-
alized using box-and-whisker plots for each group of data,
making it easier for the physician to understand the mean-
ings of the different predicates. The fuzzy sets are again
visualized by the corresponding membership functions.

These graphics can now be used to illustrate the defini-
tion of the predicates and discuss the results with a physi-
cian. In an interactive setting, it is possible to modify the
underlying fuzzy sets interactively.

The graphics shown in Fig. 1 are discussed in detail in
the following section.

4 Experiments

For the present study, we selected 562 case records of
adult hepatitis patients and 231 case records of non-infected
patients. The patients received in-patient treatment at the
Vienna General Hospital (AKH Wien) between 1976 and
1986. In each case the patient’s clinical diagnosis was ver-
ified by serology, which was regarded as the gold standard.
A list of the diseases included in this survey is given in Ta-
ble 1.

The patients of the last group had no liver disease and
therefore constituted the reference group. As the data were
collected between April 1, 1976 and March 31, 1986, no
distinction was made between hepatitis C, D, E, F, and G.
Instead, the term “hepatitis non-A non-B” was used.

A detailed laboratory analysis was performed for each
patient. The following parameters were included: albumin,
alkaline phosphatase, alpha 1 globulin, alpha 2 globulin,
beta globulin, gamma globulin, gamma-glutamyl transpep-



Table 1. Data set of hepatitis patients

disease abbrev. ICD-9 code
hepatitis A A 070.1
hepatitis B B 070.3
hepatitis non-A non-B NAB 070.5
chronic hepatitis CH 571.4x
alcoholic hepatitis ALK 571.1
hepatitis carrier B CAR V02.6
psycho-physiological disorder - 306.9

tidase, aspartate aminotransferase (GOT), GPT, lactate de-
hydrogenase, bilirubin, age, and sex.

In the following, we show how fuzzy predicates for GPT
were created using these data. As the first step, the fuzzy
predicates normal, reduced, and elevated were defined. The
statistics for this parameter is shown in the first section of
Table 2, where “R” indicates the samples of the reference
group, and “D” those suffering from a disease. A statistical
comparison with the employed default parameters (45 U/l
for male, and 34 U/l for women) is also shown. The pa-
rameters obtained using the available data correspond to the
default value for male patients, but are significantly lower
for women. In both cases, the distribution has long tails.
The computed fuzzy sets as well as the underlying distribu-
tions and a sensitivity/specificity plot (blue lines) are shown
in Fig. 1.

In the plot for male patients, the majority of samples
from the reference group are covered by the “normal” pred-
icate with a degree of membership equal to one. The over-
lap with the “elevated” predicate might appear slightly large
because there is a significant gap between 70 and 90 U/l.
According to the Dixon test, however, this does not justify
elimination of values above 90 U/l.

In the actual plots, data sets from the five different dis-
eases are shown together with the data from the reference
population (marked as “-”). Evidently, the predicate “nor-
mal” covers the reference population. The predicate “ele-
vated” adds to the right of the “normal” predicate and its
upper bound is defined according to the 97.5% quantile of
the data classified as “NAB”. The overlap looks rather small
in this plot because of the logarithmic scale. Finally, the
upper bound of the “highly elevated” predicate is defined
according to the maximum of the entire data set.

5 Conclusion

We present a method for creating mathematical repre-
sentations of medical concepts using fuzzy predicates, in
accordance with the specifications published by the IFCC.
These predicates can be used to express domain knowl-

edge in medical expert systems as well as increase the in-
terpretability of results in medical data-mining applications.
The proposed algorithm is supplemented by specific visual-
ization methods that aid the physician in grasping the struc-
ture of the data and modifying the results according to his
needs.

This approach should help to reduce the time needed to
set up an expert system involving fuzzy predicates and also
help to determine the meaning of certain predicates when
presenting results from a data-mining application.

Future work will focus on the integration of the pre-
sented method in a general analysis and inference system
for medical data. This system will include data-mining al-
gorithms to generate diagnostic models along with a rule
induction mechanism to draw conclusions for new data.
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