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Abstract 

 Some of the first knowledge-based systems to be introduced were medical knowledge-based 
systems, namely MYCIN, INTERNIST, CASNET, PIP, EXPERT, and CADIAG. The latter is 
one of the first to use the theory of fuzzy sets. It was developed to assist the physician in 
diagnostics.   
The present article delineates two specific pathways resulting from a bifurcation in the 
history of applied fuzzy systems in medicine. This bifurcation occurred in the 1970’s in the 
history of the theory of fuzzy sets and systems, when Lotfi A. Zadeh published the “rule of 
max-min composition” and other researchers applied this rule in different areas. This was 
the origin of two research areas: fuzzy control, initiated by Sedrak Assilian and Ebrahim 
Mamdani in London, and fuzzy relations, introduced by Elie Sanchez in Marseille. Later on 
both concepts were used to construct medical knowledge-based systems in medicine. We 
present two Viennese systems representing these concepts: the “fuzzy version” of the 
Computer-Assisted DIAGnostic System (CADIAG) which was developed at the end of the 
1970s, and a fuzzy knowledge-based control system, FuzzyKBWean, which was established 
as a real-time application based on the use of a Patient Data Management System (PDMS) 
in the intensive care unit (ICU )in 1996. 
 
 
1  Introduction 

 
The history of fuzzy knowledge-based systems in medicine can be viewed in a selective 

manner. The earliest beginnings can be traced back to general non-fuzzy knowledge-based 
systems. Medical knowledge-based systems were introduced very early, the first of these 
being MYCIN, INTERNIST, CASNET, PIP, EXPERT, and CADIAG. Knowledge-based 
systems were also developed and applied in several other areas, but these will not be dealt 
with here. 

The present article delineates two specific pathways through an eventful history. They 
result from a bifurcation in the development of fuzzy systems developed to assist the 
physician in medical science. This branching occurred in the 1970’s in the history of the 
theory of fuzzy sets and systems, when Lotfi A. Zadeh’s “rule of max-min composition” 
(Arnold Kaufmann termed it meta-implication) was applied in different areas. Fuzzy control 
was initiated by Sedrak Assilian and Ebrahim Mamdani in London, UK, [1], whereas fuzzy 
relations were generally introduced by Zadeh [2] and into medical sciences by Elie Sanchez 
in Marseille, France [3, 4]. 

Today, both concepts are used to construct medical knowledge-based systems in medicine. 
The branch of fuzzy relations has been used to model “medical knowledge” expressing 
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associations between symptoms and diseases. Using this approach, a “fuzzy version” of the 
Computer-Assisted DIAGnostic System was developed in 1980 at the University of Vienna 
Medical School in collaboration with the Vienna General Hospital. The version is based on 
Klaus-Peter Adlassnig’s Fuzzy Logical Model of Computer-Assisted Medical Diagnosis [5]. 

The branch of fuzzy control is being implemented in medical application systems since the 
1990’s, as real-time applications are being adequately executed by computers since this time. 
Scientists and physicians at the University of Vienna Medical School and the Vienna General 
Hospital established the fuzzy knowledge-based control system FuzzyKBWean as a real-time 
application, based on the use of a Patient Data Management System (PDMS) in the intensive 
care unit (ICU) in 1996. 

 
 

2  Fuzzy Sets, Fuzzy Relations, and Fuzzy Control  
 
Any history of fuzzy knowledge-based systems in medicine must take the development of 

the fuzzy set theory into account. This important branch of mathematics originated in the 
second half of the 20th century (1960’s). Zadeh, a professor of electrical engineering at the 
University of California, Berkeley, defined fuzzy sets by their characteristic function 
(membership function), which is allowed to assume any value in the interval [0,1]. The space 
of all fuzzy sets in a given set becomes a Boolean algebra; thus, a propositional logic with 
fuzzy concepts constitutes fuzzy logic. 

In 1973, Zadeh defined fuzzy relations: If L(A×B) is the set of all fuzzy sets in the Cartesian 
product  A × B of crisp sets A and B, than a fuzzy relation is a subset of L(A×B) [2]. 

Having three sets A, B, and C, to compose fuzzy relations Q ⊆ L(A×B) and R ⊆ L(B×C) to 
get another fuzzy relation T ⊆ L(A×C), Zadeh introduced the combination rule of a max-min-
composition: T = Q * R is defined by the following membership function  

{ }),();,(minmax),( zyyxyx RQByT µµµ
∈

= , x∈A y∈B z∈C. 

Using this composition formula as an inference rule, Assilian and Mamdani developed the 
concept of fuzzy control in the early 1970s [1, 7]. Fuzzy control can be described as “control 
with sentences rather than equations”. In many cases, it is more natural to use sentences, or 
rules, for instance in operator-controlled systems, with the control strategy written in terms of 
if-then clauses. If the controller further adjusts the control strategy without human 
intervention, it is adaptive. The adaptive fuzzy controller, invented by Assilian and Mamdani, 
is known as the self-organising fuzzy controller. An adaptive controller is a controller with 
adjustable parameters and a mechanism for adjusting the parameters [6]. Despite the lack of a 
formal definition, an adaptive controller has a distinct architecture consisting of two loops: a 
control loop and a parameter adjustment loop (see figure 1). 
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Figure 1: Adaptive control system 

 
In other words, fuzzy control is based on an I/O function that maps each very low-

resolution quantization interval of the input domain into a very low-low resolution 
quantization interval of the output domain. As there are a few fuzzy quantization intervals 
covering the input domains, the mapping relationship can be very easily expressed using the 
“if-then” formalism. (In some applications this leads to a simpler solution in less designing 
time.) The overlapping of these fuzzy domains and their usually linear membership functions 
will eventually allow a rather high-resolution I/O function between crisp input and output 
variables to be achieved. Mamdani’s development of fuzzy controllers in 1974 [7] gave rise 
to the utilization of these fuzzy controllers in ever-expanding capacities.  

 
 

3  Fuzzy Systems in Medicine 
 
Four years after his first paper on fuzzy sets, Zadeh suggested their application in medical 

science. He wrote: “A human disease, e.g., diabetes, may be regarded as a fuzzy set in the 
following sense. Let X = {x} denote the collection of human beings. Then diabetes is a fuzzy 
set, say D, in X, characterized by a membership function µD(x) which associates with each 
human being x his grade of membership in the fuzzy set of diabetes” ([8], p. 205). 

Merle Anne Albin, a mathematician in Berkeley wrote her doctoral thesis Fuzzy Sets and 
Their Applications to Medical Diagnosis and Pattern Recognition in 1975 [9], and a year 
later in Toronto, Canada, Alonso Perez-Ojeda wrote his master thesis Medical Knowledge 
Network. A Database for Computer Aided Diagnosis [10]. Harry Wechsler published his 
Applications of Fuzzy Logic to Medical Diagnosis [11] while Augustine O. Esogbue and 
Robert C. Elder published two parts of a fuzzy model of a physician’s decision process in the 
new journal Fuzzy Sets and Systems in 1979 and 1980 [12, 13]. All these articles took no 
notice of Zadeh’s thoughts on the application of his fuzzy sets in medicine! 

 
3.1  “Medical Knowledge”  as  a Fuzzy Relation 

 
In the cited article [8], Zadeh formulated his thoughts on medical applications of the theory 

of fuzzy sets very accurately: “In some cases, it may be more convenient to characterize a 
fuzzy set representing a disease not by its membership function but by its relation to various 
symptoms which in themselves are fuzzy in nature. For example, in the case of diabetes a 
fuzzy symptom may be, say, a hardening of the arteries. If this fuzzy set in X is denoted by A, 
then we can speak of the fuzzy inclusion relation between D and A and assign a number in 
the interval [0,1] to represent the “degree of containment” of A in D. In this way, we can 
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provide a partial characterization of D by specifying the degrees of containment of various 
fuzzy symptoms A1, …, Ak  in D. When arranged in a tabular form, the degrees of 
containment constitute what might be called a containment table” ([8], p. 205). 

When four years later Perez-Ojedas considered the “particular area of medical diagnosis ... 
in order to develop a prototype system to be used in the search for an adequate strategy for 
the simulation of an approximate reasoning model in medical decision-making”, he proposed 
to represent “medical knowledge” as a network of symptoms and diseases which are 
connected to each other by logical relations ([10], p. INTRO.1). He gave examples of typical 
elements of this  “medical knowledge” ([10], p. 3.2): 

� “Acute pyelonephritis usually presents bladder irritation and infection. ” 

� “Acute pyelonephritis presents occasionally fever, or chills, and malaise.” 

� “A runny nose is almost always present in a common cold. ” 

The abbreviations D1 and D2 represent the diseases acute pyelonephritis und common cold 
and  S1 to S6 mean runny nose, fever, bladder irritation, infection, chills, and malaise. 
Therefore the “network of medical knowledge” could be graphically constructed by 
elementary knots and arcs. However, Perez-Ojeda modeled the relations (usually, 
occasionally, and almost) by mathematical probability modifiers:  

 
 

                                almost always 
           D1    →   S1  

      usually 

    D2    →   S3 AND S4 
                     occasionally 

           D2    →   (S2 OR S5) AND S6 
 

Figure 2: Examples of elements of the network “medical knowledge”. 
 
 
A more far-reaching concept of modeling relationships between symptoms and diseases 

was introduced in 1974 by Elie Sanchez from Marseille, France, in his human biological 
doctoral thesis “Equations de Relations Floues” [3]. Sanchez planned “to investigate medical 
aspects of fuzzy relations at some future time” ([4], p. 47). In 1979 he introduced the 
relationship between symptoms and diagnoses by the concept of ‘medical knowledge’: “In a 
given pathology, we denote by S a set of symptoms, D a set of diagnoses and P a set of 
patients. What we call “medical knowledge” is a fuzzy relation, generally denoted by R, from 
S to D expressing associations between symptoms, or syndromes, and diagnoses, or groups of 
diagnoses” ([14], p. 438). 

Sanchez adopted Zadeh’s compositional rule of inference as an inference mechanism. It 
accepts fuzzy descriptions of the patient’s symptoms and infers fuzzy descriptions of the 
patient’s diseases by means of the fuzzy relationships described earlier. If a patient’s 
symptom is Si then the patient’s state in terms of diagnoses is a fuzzy set Dj with the 
following membership function:  

{ }),();(minmax)( dssd RSSsD ii
µµµ

∈
= , s∈S, d∈D. 

µR(s,d) is the membership function of the fuzzy relation ‘medical knowledge’. 
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With P, a set of patients, and a fuzzy relation Q from P to S, and by ‘max-min composition’ 
we get the fuzzy relation T =Q*R  with the membership function 

{ }),();,(minmax),( dsspdp RQSsT µµµ
∈

= , p∈P, s∈S, d∈D. 

 
3.2  Computer-Assisted Diagnostic 

 
In the nineteen-sixties and seventies, the Department of Medical Computer Sciences at the 

University of Vienna Medical School and the Vienna General Hospital envisaged the 
development of a computer-assisted diagnostic system that did not use stochastic methods. 
To systemize and formalize medical knowledge and to store it in a suitable form, Georg 
Grabner (professor of gastroenterology and hepatology and both head of the University 
Department of Medical Computer Sciences and, at the same time, head of the University 
Clinic of  Gastroenterology and Hepatology) and the IBM information scientist W. 
Spindelberger started to use a computer for medical diagnosis in the late 1960’s. This was 
followed by intensive collaboration between physicians and mathematicians, and engineers 
constructed a first computer-assisted diagnostic system basing on two-value logic in 1968 
[15]. One year later Gangl, Grabner, and Bauer published their first experiences with this 
system in the differential diagnostics of hepatic diseases [16]. 

When Klaus-Peter Adlassnig came to the Vienna Institute in 1976, the second generation of 
the system was developed on the basis of three-valued logic. Here, in addition to symptoms 
and diagnoses being considered to be ‘present’ or ‘absent’, ‘not examined’ or ‘not 
investigated’ symptoms and ‘possible’ diagnoses are also included. For this system known as 
CADIAG-I (Computer-Assisted DIAGnostic), the following relationships between symptom 
(Si) and disease (Dj) have been defined: 

� OP: Si is obligatory occurring and proving for Dj.  

� E: Si forces obligatory exclusion of Dj.  

� FP: Si is facultative occurring and proving for Dj.  

� ON: Si is obligatory occurring and not proving for Dj.  

� FN: Si is facultative occurring and not proving for Dj.  

� NK: A specific relationship between the symptom 
and the disease is not known. 

With three-valued logic these relationships could be expressed in the form of three-valued 
logic operators: the symptom’s values could be present (1), absent (0), or not investigated 
(½), whereas the possible diagnoses’ values could be present (1), absent (0), or possible (½). 

As an example we show here the three-valued logic truth table of the relationship OP (Si is 
obligatory and proving. Si must be present for Dj and Si proves Dj; Si ⇔ Dj.) 
 

  Dj 
Si 

0 ½ 1 

0 1 ½ 0 
½ ½ ½ ½ 
1 0 ½ 1 

 
 
 
 
 
 

Figure 3:  Three-valued logic truth table of OP: Si ⇔ Dj. 
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Adlassnig was aware of the theory of fuzzy sets and the fact that it had been used in 

computer-aided diagnosis. In his first paper together with Grabner, The Viennese Computer-
Assisted Diagnostic System. Its Principles and Values in 1980 [17], he referred to the medical 
diagnostic systems using the concept of fuzzy sets by Tautu and Wagner [18] and by Moon et 
al. [19]. He now proposed to integrate this concept into a more suitable version of the system 
CADIAG: “Fuzzy set theory with its capability of defining inexact medical entities as fuzzy 
sets, with its linguistic approach providing an excellent approximation to medical texts as 
well as its power of approximate reasoning, seems to be perfectly appropriate for designing 
and developing computer-assisted diagnostic, prognostic and treatment recommendation 
systems” ([20], p. 205). 

This new fuzzy version of the computer-assisted diagnostic system, CADIAG-II, appeared 
in 1980. In Adlassnig’s fuzzy logical model of computer-assisted medical diagnosis [20], all 
symptoms Si∈Σ are considered to be fuzzy sets of different universes of discourse X with 
membership functions , for all x∈X, indicating the strength of x’s affiliation in S)(x

iSµ

)( p

i, 
while all diagnoses Dj∈∆ are considered to be fuzzy sets in the set Π of all patients under 
consideration, with  assigning the patient p’s membership to be subject to D

iDµ j.  

To describe ‘medical knowledge’ as the relationship between symptom Si and disease Dj 
Adlassnig found two fuzzy relationships, namely occurrence (How often does Si occur with 
Dj ?) and confirmability (How strongly does Si confirm Dj?) ([21], p. 225). These functions 
could be determined by  

� linguistic documentation by medical experts and  

� medical database evaluation by statistical means or a combination of both.  

In both ways to determine these fuzzy relationships between symptoms and diagnoses, 
occurrence and confirmation, they have been defined as fuzzy sets. When physicians had to 
specify these relationships by only giving answers like always, almost always, very often, 
often, unspecific, seldom, very seldom, almost never, and never, they choose fuzzy sets which 
have been defined by Adlassnig’s determination of their membership functions. In the case of 
medical databases, the membership functions’ values of occurrence and confirmability could 
be defined as relative frequencies. 
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Figure 4:  Membership functions of the fuzzy sets occurrence o (former presence p)  

and confirmability (former conclusiveness c) ([6], p. 145) 
 
Thus, in CADIAG-II, the fuzzy relationships between symptoms (or symptom 

combinations) and diseases are given in the form of rules with associated fuzzy relationship 
tupels (frequency of occurrence o, strength of confirmation c); their general formulation is 
([22], p. 262): 

� IF antecedent THEN consequent WITH (o, c) 

In particular, the following fuzzy relationships exist ([22], p. 262; K = set of symptom 
combinations SCi ): 

� Si, Dj  (occurrence relationship)  Ro
SD    ⊂ Σ × ∆ 

� Si, Dj  (confirmation relationship)  Rc
SD    ⊂ Σ × ∆ 

� SCi, Dj  (occurrence relationship)  Ro
SCD ⊂ K × ∆ 

� SCi, Dj   (confirmation relationship)  Rc
SCD ⊂ K × ∆ 

� Si, Sj   (occurrence relationship)  Ro
SS    ⊂ Σ × Σ 

� Si, Sj   (confirmation relationship)  Rc
SS    ⊂ Σ × Σ 

� Di, Dj   (occurrence relationship)   Ro
DD  ⊂ ∆ × ∆ 

� Di, Dj   (confirmation relationship)  Rc
DD  ⊂ ∆ × ∆ 

 
To deduce diseases Dj∈∆ suffered by patient Pk∈Π  from the observed symptoms S i ∈Π in 

CADIAG-II we use three max-min-compositions as inference rules: 

� hypotheses and confirmation     defined by c
SDPSPD RRR o=1

{ }),();,(minmax),(1 jiRikRSjkR DSSPDP c
SDPS

iPD
µµµ =  

� exclusion (by present symptoms)   defined by )1(2 c
SDPSPD RRR −= o
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{ }),(1);,(minmax),(2 jiRikRSjkR DSSPDP c
SDPS

iPD
µµµ −=  

� exclusion (by absent symptoms)    defined by o
SDPSPD RRR o)1(3 −=

{ }),();,(1minmax),(3 jiRikRSjkR DSSPDP o
SDPS

iPD
µµµ −=  

CADIAG-II was very successful in partial tests, e.g., in a study of 400 patients with 
rheumatic diseases, CADIAG-II elicited the correct diagnosis in 94.5 %  ([22], p. 264). More 
results can be found in [21, 22]. 

 
3.3  Fuzzy Control in Medicine  

 
Fuzzy control techniques have recently been applied in various medical processes, such as 

pain control [23] and blood pressure control [24]. Fuzzy control compared to classical control 
theory (PID control), which is a fuzzy logic approach to control, offers the following 
advantages [25, 26]: 

� It can be used in systems which cannot be easily modeled mathematically. In 
particular, systems with non-linear responses that are difficult to analyze may 
respond to a fuzzy control approach.  

� As a rule-based approach to control, fuzzy control can be used to efficiently 
represent an expert's knowledge about a problem. 

� Continuous variables may be represented by linguistic constructs that are easier to 
understand, making the controller easier to implement and modify. For instance, 
instead of using numeric values, temperature may be characterized as "cold, cool, 
warm, or hot".  

� Fuzzy controllers may be less susceptible to system noise and parameter changes; in 
other words, they will be more robust. 

� Complex processes can be controlled by relatively few logical rules, permitting an 
easily comprehensible controller design and faster computation for real-time 
applications. 

In other words, fuzzy control can be best applied to production tasks that heavily rely on 
human experience and intuition, and which therefore rule out the application conventional 
control methods. The use of Patient Data Management Systems (PDMS) in Intensive Care 
Units (ICU) since 1992 has made it possible to apply fuzzy control applications in real-time 
in this medical field. 

Mechanical ventilation is such an example. One purpose of mechanical ventilation is to 
achieve optimal values of arterial O2-partial pressure (pO2) and arterial CO2-partial pressure 
(pCO2) while ensuring careful handling of the lung. 

Careful handling of the lung: 

� FiO2 < 60 (else oxygen toxicity) 

� low inspiratory pressures PI < 35 (else barotrauma) 

� small shear forces equivalent to small tidal volumes (else volume trauma) 

� prevent atelectasis formation (else shear forces at reopening) 
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In addition, the patient has to be carefully handled in order to avoid cardiac failure and 
respiratory muscle fatigue. Both of these conditions have to be observed if the heart rate or 
the respiratory rate increases. The value pO2 states whether the oxygenation is sufficient. pO2 
is not continuously available because it would entail taking a blood sample. O2 saturation 
(SpO2) provided by pulsoximetry is more convenient because SpO2 is permanently available. 
pCO2 states whether alveolar ventilation is sufficient. Similarly, the end-tidal CO2 (EtCO2) is 
permanently available, but at the disadvantage of being an indirect measure of pCO2. Thus, 
the main physiological input parameters of the weaning system are SpO2 and EtCO2. 

For instance, the Biphasic Positive Airway Pressure (BIPAP) controlled mode is an 
integrated mode of ventilation of Evita ventilators (Evita, Dräger, Lübeck, Germany). This 
mode allows spontaneous inspiration during the whole respiratory cycle and thus permits a 
very smooth and gradual transition from controlled to spontaneous breathing. Ventilatory 
adjustments are based on two pressure levels: inspiratory pressure (PI or  Phigh) and expiratory 
pressure (PE, or Plow); on two durations, inspiration time (tI) and expiration time (tE), as well 
as on the fraction of inspired O2 (FIO2). Within this mode, five parameters can be adjusted 
(see figure 5). 

 
Figure 5: BIPAP ventilation mode 

 
Some recent examples are: VentPlan, a ventilator management advisor that interprets 

patients’ physiological data to predict the effect of proposed ventilator changes [27]; ESTER, 
a program which assesses the patient's pathophysiological state using modified APACHE-II 
criteria, then offers suggestions for weaning from intermittent mandatory ventilation [28]; 
NEOGANESH, a program for automated control of assisted ventilation in ICUs [29]; 
KUSIVAR, a program which describes a comprehensive system for respiratory management 
during all phases of pulmonary disease [30]; and FuzzyKBWean, a fuzzy knowledge-based 
control system that proposes stepwise changes in ventilator settings during the entire period 
of artificial ventilation at the bedside in real time [31]. Although many such expert systems 
have been described, only a few have been tested in clinical patient care. For example, 
studies of computer-controlled optimization of positive end-expiratory pressure and 
computerized protocols for the management of adult respiratory distress syndrome were 
explored by East and Bohm [32]. A computerized ventilator weaning system for 
postoperative patients was tested by Strickland and Hasson [33] and Schuh et al. [31]. 

The procedure for weaning a patient with respiratory insufficiency from mechanical 
ventilation is a complex control task and requires expertise based on long-standing clinical 
practice. Fuzzy knowledge-based weaning (FuzzyKBWean) is a fuzzy knowledge-based 
control system that proposes stepwise changes in ventilator settings during the entire period 
of artificial ventilation at the bedside in real time. Information is obtained from a PDMS 
operating at the ICU with a time resolution of one minute. The system is used for 
postoperative cardiac patients at the Vienna General Hospital. A large part of the explicitly 
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given and implicitly available medical knowledge of an experienced intensive care specialist 
could be transferred to the fuzzy control system. Periods of deviation from the target are 
shorter with FuzzyKBWean.  

 
 

4  Conclusion 
 
In medicine, two fields of fuzzy applications were developed in the nineteen-seventies: 

computer assisted diagnostic systems and intelligent patient monitoring systems. Both 
developments of Zadeh’s “rule of max-min composition”, namely fuzzy relations and fuzzy 
control, have been applied in these areas. 

For obvious reasons, the available body of medical data (on patients, laboratory test results, 
symptoms, and diagnoses) will expand in the future. As mentioned earlier, computer-assisted 
systems using fuzzy methods will be better able to manage the complex control tasks of 
physicians than common tools. Using current web technology, integrated systems of both types 
of fuzzy systems described above can be easily implemented as internet or intranet applications. 

The actual successor of the systems CADIAG and CADIAG-II, developed at our department, 
is MedFrame/CADIAG-IV. In contrast to its predecessors, which were developed for an IBM-
host-based system, Medframe/CADIAG-IV will be part of the client/server-based medical 
expert system shell MedFrame, which has as a core component “an object model for storing 
domain knowledge in various representation formalisms” … “including lookup tables, rules 
(if-then rules, certainty factor rules, fuzzy control rules, ...), crisp and fuzzy automatons, crisp 
and fuzzy decision graphs, and fuzzy-neuro systems. In addition, the object model has been 
extended by a set of classes for storing patients’ administrative and examination data” ([33], 
p. 55). Medframe/CADIAG-IV will include 

� a class library for modeling and storing electronic medical and patient data records and 
“medical knowledge” applying fuzzy sets and fuzzy relations, and  

� a set of tools for implementing client/server-based expert systems. 

MedFrame/CADIAG-IV, which is currently being developed, will be a huge step towards 
decision-making support and computer-based automation of sub-fields of medical practice 
having internet capabilities, which will be available for patients as well as physicians. 

Most control applications in the hospital setting have to be performed within critical 
deadlines. Decisions have to be made locally and promptly. This is a setting that requires a local 
hospital intranet rather than the possibilities of the world-wide internet. 

An intranet is simply a set of applications that employs internet technology for internal use. 
The advantages of an intranet include the following: efficient access for remote users, universal 
access, and system-independent clients. All this is achieved in a safe intranet environment. The 
greatest benefit of a hospital intranet is its universal access. In the case of FuzzyKBWean, for 
instance, the attending physician may not be at the patient’s bed but can retrieve information 
about the patient more or less simultaneously via the intranet. A wireless intranet access with 
webpads is likely to be the next step for monitoring patients in such an environment. 
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