

Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax

Jeroen S. de Bruin, PhD, MSc1,2, Heinz Steltzer, PhD, MD3, Andrea Rappelsberger, MSc1,
Klaus-Peter Adlassnig, PhD, MSc, FACMI, MIAHSI1,2

1Section for Artificial Intelligence and Decision Support, Center for Medical Statistics,
Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria;

2Medexter Healthcare, Vienna, Austria; 3Trauma Hospital Vienna South, Vienna, Austria

Abstract

Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax).
With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees
of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to
incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden
Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy
automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented
FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress
syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e.,
fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that
fuzzy state monitors can be implemented in a straightforward manner.

Introduction

By definition an automaton is “an abstract state-determined machine designed to follow automatically a predetermined
sequence of operations or respond to encoded instructions”. Automata are prime examples of general systems over
discrete spaces [1]. The concepts of state and transition are core aspects of automata theory. The best known class of
automata are deterministic finite-state automata, in which systems can be in exactly one of a finite number of states at
any given time. These states are labeled using natural language concepts and/or classifications. Transitions between
system states (i.e., linguistic concepts) are triggered by an external input, and may be presented as a function mapping
the current state and the input into the next state [1].

Although the concept of a discrete state is attractive due to its simplicity in terms of implementation, it is of limited
use for modeling situations and contexts where discrete states cannot be accurately defined using natural language
concepts, or where knowledge about the situation is imprecise or incomplete. For instance, an individual’s health
cannot be accurately classified by discrete, mutually exclusive concepts at the sole end of the spectrum, such as healthy
or sick, nor would it be practical to introduce a myriad of states between these spectrum poles. To address these
shortcomings in classification with linguistic concepts, Zadeh introduced fuzzy sets and fuzzy logic [2]. With fuzzy
sets, the relationship between linguistic terms and measured or observed data is expressed as a degree of compatibility
(DoC) calculated by fuzzy membership functions rather than a discrete, dichotomous classification. In this context, a
DoC formally models the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to
incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic, allowing for
approximate reasoning instead of exact rule inference.

The incorporation of fuzzy sets and fuzzy logic into automata gives rise to the notion of fuzzy automata, which are
able to handle uncertainty and continuous space [3,4]. With fuzzy automata, a system can be in more than one state at
the same time, whereby the applicability (or membership) of each state is expressed as a DoC. Because of this multi-
state membership, multiple simultaneous transitions of state are also possible. The system as a whole is far more
expressive because the potentially endless combinations of state values (i.e., applicability of linguistic concepts) can
imply richer, more abstract linguistic concepts. Furthermore, multiple (partial) parallel transitions cause transitions
between linguistic concepts to be more gradual and thus more intuitive.

Given the properties of fuzzy automata discussed above, they are well suited for the use in (automated) clinical
monitors [5]. In clinical monitoring, streams of patient data are measured in (occasionally brief) time intervals and
presented to the clinician. Given the increasing body of patient data being measured in various time intervals, the
monitor is growing more complex, both in terms of the number of presented data elements as well as the interpretation
of combinations of different data elements. In other words, the more powerful a monitor becomes (from a functional
perspective), the greater is the risk of errors of omission in the interpretation of data. By using a fuzzy automaton in

475

clinical monitoring for the interpretation and aggregation of measured patient data over time, the dimensionality of
input data can be reduced and presented in semantically meaningful, clinically relevant linguistic concepts over fixed
time intervals, along with a gradual indication of their applicability to the patient.

Standardized technical communication with hospital information systems and electronic health records is an equally
important element of meaningful semantic communication with users. The acceptance and dissemination of the
aforementioned monitoring systems could be improved by employing known communication standards, especially
when the systems are to be embedded into existing clinical monitors. A widely used standard for computerized
knowledge representation and processing is Arden Syntax [6], which is a programming language for the collection,
description, and processing of medical knowledge in a machine-executable format. Since Arden Syntax version 2.9
was augmented by formal constructs based on fuzzy set theory and fuzzy logic, it is now possible to implement a
fuzzy automaton in a clinical system using a standard that intrinsically supports fuzzy methods.

In this paper, we report our preliminary experience concerning the implementation of a clinical fuzzy automaton using
Arden Syntax 2.9 (Fuzzy Arden Syntax). As a use case we re-implemented a previously published monitoring system
named FuzzyARDS [7], which is a clinical monitoring system for patients suffering from acute respiratory distress
syndrome (ARDS) and is based on the DiaMon-1 framework [8]. For easier comprehension, we provide an overview
of Arden Syntax and the fuzzy methods incorporated in Fuzzy Arden Syntax, as well as a short description of the
DiaMon-1 framework and the FuzzyARDS monitor. Then, using the re-implementation of parts of the FuzzyARDS
monitor (referred to henceforth as FuzzyArdenARDS) as an example, we show how key concepts of fuzzy automata,
such as fuzzy states and parallel fuzzy state transitions can be implemented in Fuzzy Arden Syntax.

Methods

Arden Syntax

Arden Syntax is a standard for computerized medical knowledge representation and processing. Arden Syntax
knowledge bases are fragmented into medical logic modules (MLMs), which are collections of medical rules and
knowledge for the purpose of making at least one medical decision [9]. Several properties make Arden Syntax well
suited for the computerized representation of medical knowledge [10]. In fact, the program code in Arden Syntax
resembles natural language. Thus MLMs are understood more easily by healthcare professionals. Moreover, pure
medical knowledge is separated from more technical processing, which improves code transparency. Finally Arden
Syntax supports various data types specific to medical documentation, such as time and duration types.

A complete overview of Arden Syntax is beyond the scope of this paper. However, for comprehension of the examples
presented in this paper we will provide a short overview of Fuzzy Arden Syntax. For a complete description we refer
to the Arden Syntax version 2.9 specification [6].

Each Arden Syntax MLM is hierarchically structured. At the top level an MLM is divided into the categories of
maintenance, library, knowledge, and resources. Each of these categories contains category-specific slots. Slots in the
maintenance category enable the MLM author to provide metadata on the MLM, such as the MLM title, author, or
version. Slots in the library category provide contextual information about the MLM, such as the purpose of the MLM,
an explanation of its functionality, and evidence-based resource citations. The medical knowledge of the MLM is
implemented in the knowledge category. In the data slot, MLM parameters can be assigned to variables, and data from
external sources can be obtained through curly braces expressions. The MLM’s program logic is implemented in the
logic slot. Apart from implementing logic, processing can also be deferred through the invocation of other MLMs.
Execution ends with a concluding statement which, if considered true, results in the execution of the action slot.
Finally, localized messages can be constructed through the optional definition of the resources category.

Fuzzy Arden Syntax

Since version 2.9, the Arden Syntax supports formal constructs based on fuzzy set theory and fuzzy logic. We will
present a selection of fuzzy extensions implemented in Fuzzy Arden Syntax in this section. Note that this is not a
complete overview of all fuzzy concepts implemented in Fuzzy Arden Syntax; for a detailed description of fuzzy
constructs implemented in Fuzzy Arden Syntax we refer to previously published work [11].

The truth value model of Arden Syntax was expanded in order to extend traditional methods of calculation and logic.
Prior to version 2.9, the truth value model was dichotomous, supporting only the values “true” and “false”. However,
truth values in Fuzzy Arden Syntax may now constitute any value in the range [0, 1]. True and false still exist in this
model as the extremes of the range: “false” has a truth value of 0, whereas “true” has a truth value of 1. Based on this

476

truth value model, Fuzzy Arden Syntax incorporates fuzzy set data types, built-in propositional fuzzy logic operators,
and degrees of applicability of conditional branches.

The fuzzy set data type can be used to model and quantify the unsharpness of boundaries in definitions of linguistic
concepts. A fuzzy set is declared with two or more value tuples which define the fuzzy region(s). From these tuples,
a linear membership function is constructed for the fuzzy set, which is used to calculate the DoC of measured or
observed data with respect to the clinical linguistic concept under consideration.

With fuzzy logic operators, propositional uncertainty in relationships between linguistic clinical concepts can be
modeled implicitly. Three basic propositional fuzzy logic operations are implemented in Fuzzy Arden Syntax –
negation, conjunction, and disjunction. These are equipped to handle all truth values in the extended truth value model.
By default, negation of a concept is implemented as 1 minus the truth value of that concept. The standard minimum
function is used as the fuzzy conjunction operator, and the standard maximum function is used as the fuzzy disjunction
operator.

The new truth value model called for an extension of the evaluation mechanism for conditional branches. Whereas
only one conditional branch was executed at a time in the traditional model, in the extended model each branch whose
condition amounts to non-zero is executed in parallel. To this end, all simple data types have a degree of applicability,
which is set to 1 by default. However, when the program execution splits into multiple parallel branches, each branch
is provided with its own set of duplicated variables, and each variable is assigned a degree of applicability which is
equal to the relative truth value of the respective branch’s conditional expression. After execution of all conditional
branches, variable values can either be aggregated or not. When the branches are aggregated (through the aggregate
keyword at the end of the conditional block), duplicated variables are joined using a weighted average (applicability
multiplied by the variable value). If not aggregated, the MLM will conclude with multiple return values, each with its
own applicability.

As an example, consider the Fuzzy Arden Syntax MLM below in which we use fuzzy sets to classify the severity of
ARDS. For the sake of brevity, we have confined the example to the knowledge category.

1 maintenance: […]

2 library: […]

3 knowledge:

4 type: data_driven;;

5 data: (pao2, fio2) := argument;; // blood gas and inspiration

6 priority: ;;

7 evoke: ;;

8 logic:

9 // Fuzzy set definitions

10 ARDS_severe := fuzzy set (100,1), (110,0);

11 ARDS_moderate := fuzzy set (100,0), (110,1), (190,1), (200,0);

12 ARDS_mild := fuzzy set (190,0), (200,1), (300,1), (310,0);

13

14 // Parameter analysis

15 if ((pao2 / fio2) is in ARDS_severe) then

16 msg := "Patient suffers from severe ARDS.";

17 elseif ((pao2 / fio2) is in ARDS_moderate) then

18 msg := "Patient suffers from moderate ARDS.";
19 elseif ((pao2 / fio2) is in ARDS_mild) then

20 msg := "Patient suffers from mild ARDS.";
21 endif;

22

23 // Program conclusion

24 conclude true;;

25 action: return msg;;

26 urgency: ;;

27 end:

477

The logic in this MLM is based on the most recent ‘Berlin Definition’ of ARDS published in 2012 [12]. According to
this definition, the severity of ARDS is determined by the ratio of partial arterial oxygen pressure (PaO2) and the
fraction of inspired oxygen (FiO2). Based on the resulting outcome, ARDS is characterized as either mild (200 <
PaO2/FiO2 ≤ 300), moderate (100 < PaO2/FiO2 ≤ 200), or severe (PaO2/FiO2 ≤ 100). However, patients with
measured values close to these thresholds are also of interest. As such, we created fuzzy sets for all characterizations
that extend beyond the defined thresholds (lines 10-12). Next, the PaO2/FiO2 ratio is compared with each fuzzy set,
and the resulting truth values serve as conditions in conditional branches (lines 15-21). In case multiple truth values
are non-zero, each of these conditional branches is executed. Furthermore, as the branches are not aggregated, this
would cause the MLM to return multiple copies of msg, each with its own degree of applicability. For example, if
PaO2/FiO2 were 106, this would cause the “severe ARDS” message to be returned with an applicability of 0.4 and
the “moderate ARDS” message to be returned with an applicability of 0.6. This could be interpreted as a patient’s
ARDS being between the “moderate” and “severe” state.

FuzzyArdenARDS and DiaMon-1

The FuzzyArdenARDS application was re-implemented based on the original FuzzyARDS automaton, which was
constructed using the DiaMon-1 framework as discussed in [7,8]. This formal framework was developed in order to
design monitors capable of abstracting continuously supplied, objectively observed raw data into aggregated,
qualitative, linguistic concepts, such as stages of disease. Furthermore, monitors developed with this framework
provide early indication of improvement in, or deterioration of, a patient’s health status because the monitors include
smooth transitions between stages.

Applications in the DiaMon-1 framework are referred to as state monitors, which employ fuzzy automata to observe
gradual transitions between different stages of disease. In this context, a state represents a (linguistic) representation
of a patient’s health status or a specific stage of disease. Transitions provide possible pathways between states or
stages, which are triggered by inputs such as time or measured data.

A fuzzy state monitor SM is formally defined as a 6-tuple 𝑆𝑆𝑆𝑆���� = (𝑄𝑄, 𝑞𝑞�0,𝑋𝑋, 𝛿𝛿,𝑃𝑃, 𝑓𝑓). In this definition, the first four
parameters jointly constitute the underlying fuzzy automaton: Q denotes a finite set of states, 𝑞𝑞�0is a (potentially) fuzzy
subset of Q that marks the initial state, X is a finite set of input symbols, while δ: Q × X → Q is a transition function
that maps states and inputs onto states. Furthermore, P is the parameter value space over all observed parameters: p1
×…× pn, and f is a mapping function that maps parameter tuples from P to a fuzzy subset of X.

Calculation of the monitor state at time point t (𝑞𝑞�𝑡𝑡) proceeds through an inductive function based on 𝑞𝑞�𝑡𝑡−1, δ, and f.
Suppose that at time point t, f yields fuzzy subset 𝑓𝑓𝑓𝑓�𝑡𝑡, which is a collection of truth values for all x ∈ X. Then, using
the extension principle [13], the state for each q ∈ Q at time point t, 𝑞𝑞�𝑡𝑡(𝑞𝑞), can be calculated as follows:

𝑞𝑞�𝑡𝑡(𝑞𝑞) = �
��𝑞𝑞�𝑡𝑡−1(𝑞𝑞′) ∧ 𝑓𝑓𝑓𝑓�𝑡𝑡(𝑥𝑥)�𝛿𝛿(𝑞𝑞′, 𝑥𝑥) = 𝑞𝑞, 𝑞𝑞′ ∈ 𝑄𝑄, 𝑥𝑥 ∈ 𝑋𝑋� 𝑖𝑖𝑖𝑖 𝛿𝛿−1(𝑞𝑞) ≠ ∅

0 𝑖𝑖𝑖𝑖 𝛿𝛿−1(𝑞𝑞) = ∅

For the FuzzyArdenARDS application, the automaton states Q are shown in Table 1.

Table 1. Definition of the fuzzy automaton states in FuzzyArdenARDS.

State Description

Start Initial state

Normal Oxygenation is satisfactory, no additional effort needed.

Hypoxic Oxygenation is too low.

Responding to high FiO2 Oxygenation was positively affected by high FiO2.

Not responding to high FiO2 High FiO2 did not have a desired effect.

Improved after hand bagging Manual oxygenation through hand bagging has improved oxygenation.

Not improved after hand bagging Hand bagging did not have the desired effect.

 Note: FiO2, fraction of inspired oxygen.

478

As initial state 𝑞𝑞�0, the truth value for the Start state is 1, and 0 for all others. The set of input symbols X comprises
{adequate oxygenation, hypoxemia, high FiO2, low FiO2, rapidly improving oxygenation, slowly decreasing
oxygenation}. The set of fuzzy state transition rules δ is shown in Table 2.

Table 2. Definition of the fuzzy state transition rules in FuzzyArdenARDS.

Rule Begin state Transition
condition

End state

1 Start Adequate
oxygenation

Normal

2 Start Hypoxemia Hypoxic

3 Normal Hypoxemia Hypoxic

4 Hypoxic Low FiO2 ∧
Adequate
oxygenation

Normal

5 Hypoxic High FiO2 ∧
rapidly improving
oxygenation

Responding to
high FiO2

6 Hypoxic High FiO2 ∧
hypoxemia

Not responding
to high FiO2

7 Responding to
high FiO2

Low FiO2 ∧
slowly decreasing
oxygenation

Improved after
hand bagging

8 Responding to
high FiO2

Low FiO2 ∧
hypoxemia

Not improved
after hand
bagging

9 Not responding
to high FiO2

Low FiO2 ∧
hypoxemia

Hypoxic

10 Not responding
to high FiO2

High FiO2 ∧
adequate
oxygenation

Responding to
high FiO2

11 Improved after
hand bagging

Adequate
oxygenation

Normal

12 Improved after
hand bagging

Hypoxemia Hypoxic

13 Not improved
after hand
bagging

Hypoxemia Hypoxic

 Note: FiO2, fraction of inspired oxygen; ∧, fuzzy logical conjunction operator (minimum function).

Three parameters have been considered for P: time, oxygen saturation SaO2 (as a noninvasive alternative to measuring
PaO2), and FiO2. Finally, rules for fuzzy sets based on time, SaO2 and FiO2, which jointly constitute f are presented
in Table 3.

479

Table 3. Definition of the fuzzy automaton parameter-to-input symbol mapping in FuzzyArdenARDS.

Input symbol Rule (Start of fuzzy region)

Adequate oxygenation SaO2 above 97% (93%) for 5 minutes

Hypoxemia SaO2 between 90% (87%) and 93% (97%) for 2
minutes

High FiO2 FiO2 above 60% for 30 seconds

Low FiO2 FiO2 below 60% for 30 seconds

Rapidly improving oxygenation SaO2 increasing from 87–95% (85–99%) to 97–100%
(93–100%) within 30–90 seconds

Slowly decreasing oxygenation SaO2 above 96% (91%) steady or decreasing to 94%
(89%) within 25 minutes

Note: SaO2, oxygen saturation; FiO2, fraction of inspired oxygen.

Data processing

The MLMs discussed in this report were created with the ARDENSUITE software [14,15]. The ARDENSUITE is a
framework for medical knowledge representation and reasoning, which comprises an integrated development and test
environment (IDE) and an ARDENSUITE server, including software modules for interconnecting with data sources
(Figure 1).

Figure 1. Graphic depiction of the ARDENSUITE framework. Image adapted from [15].

With the ARDENSUITE IDE, users can write and compile MLMs via the authoring tool. If test data are available, users
can also immediately test the implemented MLMs. After compilation, the MLMs are uploaded to the administration
module of the ARDENSUITE server. The administration module is a management tool for compiled Arden Syntax
projects and supports functionalities such as the activation or deactivation of MLMs in an application, or MLM version
management. The core element of the ARDENSUITE server is the ARDENSUITE engine, which executes compiled
MLMs. To facilitate access to MLM functionalities by arbitrary clients, the server provides service-oriented access
through a web-service component. Using this component, MLM calls and data exchange are facilitated through the
Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) web-service standards. Web-
service standards can also be used to connect the ARDENSUITE server with SOAP/REST-compatible external database
sources through the ARDENSUITE server connector. With this module, external data sources can be accessed directly
from within MLM files using query languages (such as SQL), which are then forwarded to the source data base
management system using SOAP or REST web services.

480

Results

In this section, we discuss parts of the resulting MLM implementation of FuzzyArdenARDS. We implemented the
core of the FuzzyArdenARDS application in two MLMs. In the first MLM, fuzzy sets are defined and truth values
calculated using the SaO2 and FiO2 parameters. Each parameter is supplied as a list of values over the last half hour.
The MLM is designed for semi-real-time processing, and is called every 30 seconds, thus analyzing 30 seconds of
data at a time. Again, for the sake of brevity, we have confined the MLMs listed below to the knowledge category.

1 maintenance: […]

2 library: […]

3 knowledge:

4 type: data_driven;;

5 data: (sao2, fio2):= argument;;

6 priority: ;;

7 evoke: ;;

8 logic:

9 // Fuzzy set definitions

10 fs_adeq_oxy := fuzzy set (0.93,0), (0.97,1);

11 fs_hypoxemia := fuzzy set (0.87,0), (0.9,1), (0.93, 1), (0.97,0);

12 fs_rio_begin := fuzzy set (0.85,0), (0.87,1), (0.95, 1), (0.99,0);

13 fs_rio_end := fuzzy set (0.93,0), (0.97,1);

14 fs_sdo_begin := fuzzy set (0.91,0), (0.96,1);

15 fs_sdo_end := fuzzy set (0.89,0), (0.94,1);

16

17 // Parameter analysis

18 sao2_5mins := sao2 where they occurred within the past 330 seconds;

19 ade_oxy := minimum (sao2_5mins in fs_adeq_oxy);

20

21 sao2_2mins := sao2 where they occurred within the past 150 seconds;

22 hypoxemia := minimum (sao2_2mins in fs_hypoxemia);

23

24 fio2_30secs := fio2 where they occurred within the past 60 seconds;

25 high_fio2 := minimum (fio2_30sec) > 60;

26 low_fio2 := maximum (fio2_30sec) < 60;

27

28 sao2_30secs := sao2 where they occurred within the past 30 seconds;

29 for sao2_element in sao2_30secs do

30 reference_list := sao2 where

31 ((time of sao2_element) - (time of them)) is within 30 seconds to 90 seconds;

32 for sao2_ref_element in reference_list do

33 lmax_tv := sao2_ref_element is in fs_rio_begin and sao2_element is in fs_rio_end;

34 rio := maximum (rio, lmax_tv);

35 enddo;

36 enddo;

37

38 sdo := 0;

39 for sao2_element in sao2_30secs do

40 reference_list := sao2 where

41 ((time of sao2_element) - (time of them)) is not greater than 25 minutes;

42 for sao2_ref_element in reference_list do

43 lmax_tv := sao2_ref_element is in fs_sdo_begin and sao2_element is in fs_sdo_end;

44 sdo := maximum (sdo, lmax_tv);

45 enddo;

46 enddo;

47 conclude true;;

481

In the above MLM code snippet, truth values are calculated for each of the symbols in X. First, all fuzzy sets are
defined (lines 10-15). Then the truth value is calculated for the symbol adequate oxygenation. For this purpose, we
first need to obtain SaO2 values for the last 5½ minutes; 30 seconds for evaluation and 5 minutes thereafter to calculate
the truth value for all data in the evaluation phase according to the mapping in Table 3 (line 18). We then apply the
data to the defined fuzzy set and take the minimum truth value as an aggregate result for the last 30 seconds (line 19).
In a similar fashion, truth values are calculated for the symbols hypoxemia (lines 21-22), high FiO2, and low FiO2
(lines 24-26). For the symbol rapidly improving oxygenation, a slightly different approach is needed. First, data
elements for the first 30 seconds for evaluation are isolated (line 28). For each of the data elements, we then select
prior elements or data elements within a period of 30-90 seconds before the timestamp of the analyzed elements (line
29-31). Data elements of both lists are applied pairwise to their respective fuzzy sets, and a logical conjunction of each
pair is calculated (line 32-33). Finally, the maximum of all pairwise logical conjunctions is chosen as an aggregate
value for the symbol rapidly improving oxygenation (line 34). In a similar fashion, a truth value is calculated for the
symbol slowly decreasing oxygenation with a time period of 25 minutes.

The second MLM is used to perform the transitions. As parameters, a list of truth values for each state and a list of
truth values for each input symbol are provided. Due to space constraints, we only show that part of the MLM
implementation dealing with the transitions for the end states Start, Normal, and Hypoxic.

1 maintenance: […]

2 library: […]

3 knowledge:

4 type: data_driven;;

5 data:

6 // States (array indices) enumerations:

7 AutomStates := OBJECT [Start, Normal, Hypoxic, RespHighFiO2,

8 NotRespHighFiO2, ImpAfterHandBagging, NotImpAfterHandBagging];

9 states := new AutomStates with 1 seqto 7;

10

11 // Inputs (array indices) enumerations:

12 AutomInputs := OBJECT [AdequateOxy, Hypoxemia, HighFiO2,

13 LowFiO2, RapidImpOxygenation, SlowDecOxygenation];

14 inputs := new AutomInputs with 1 seqto 6;

15

16 (state_tvs, input_tvs) := Argument;;

17

18 logic:

19 // Start state has no incoming transitions

20 state_start := 0;

21

22 // Normal state has three incoming transitions:

23 state_normal :=

24 // Rule 1: Start and adequate oxygenation

25 (state_tvs[states.Start] as truth value and

26 input_tvs[inputs.AdequateOxy] as truth value)

27 or

28 // Rule 4: Hypoxic and low FiO2 and adequate oxygenation

29 (state_tvs[states.Hypoxic] as truth value and

30 input_tvs[inputs.LowFiO2] as truth value and

31 input_tvs[inputs.AdequateOxy] as truth value)

32 or

33 // Rule 11: Improved after hand bagging and adequate oxygenation

34 (state_tvs[states.ImpAfterHandBagging] as truth value and

35 input_tvs[inputs.AdequateOxy] as truth value);

36

37 // Hypoxic state has five incoming transitions:

482

38 state_hypoxic :=

39 // Rule 2: Start and hypoxemia

40 (state_tvs[states.Start] as truth value and

41 input_tvs[inputs.Hypoxemia] as truth value)

42 or

43 // Rule 3: Normal and hypoxemia

44 (state_tvs[states.Normal] as truth value and

45 input_tvs[inputs.Hypoxemia] as truth value)

46 or

47 // Rule 9: Not responding to high FiO2 and low FiO2 and hypoxemia

48 (state_tvs[states.NotRespHighFiO2] as truth value and

49 input_tvs[inputs.LowFiO2] as truth value and

50 input_tvs[inputs.Hypoxemia] as truth value)

51 or

52 // Rule 12: Improved after hand bagging and hypoxemia

53 (state_tvs[states.ImpAfterHandBagging] as truth value and

54 input_tvs[inputs.Hypoxemia] as truth value)

55 or

56 // Rule 13: Not improved after hand bagging and hypoxemia

57 (state_tvs[states.NotImpAfterHandBagging] as truth value and

58 input_tvs[inputs.Hypoxemia] as truth value);

59

…

…

Truth values for the seven states in Q are calculated in the MLM shown above. First, to improve MLM readability we
constructed objects that enumerate the indices of the state and input value lists supplied through the argument (lines
6-16). The calculation of truth values for each state starts thereafter. By definition, the Start state is only true at the
first iteration of the automaton, followed by 0, as it has no incoming transitions. For each other state, the truth value
is determined by a logical disjunction over all rules in Table 2 that have the respective state as an end state. The truth
value for each rule, on the other hand, is calculated by a logical conjunction over the truth values of the state and
transition conditions. As such, for the Normal state a logical disjunction is calculated over transition rule 1 (lines 25-
26), rule 4 (lines 29-31), and rule 11 (lines 34-35). The truth values for the other states are calculated in a similar
fashion.

Discussion

In the present report, we showed how fuzzy state monitors as defined in [8] could be implemented using fuzzy methods
supported by Fuzzy Arden Syntax, a standard for computerized knowledge representation and processing. When
designing a clinical knowledge base, knowledge engineers work closely together with clinicians to construct the rules.
However, the translation process from natural language to a computerized knowledge representation may be prone to
error. The average clinician may be unable to, or not interested in, the validation of source code. The original
FuzzyARDS program was written in a dialect of the object-oriented language Smalltalk, which is neither considered
a mainstream medium nor is easily understood by those untrained in its application. Given that Arden Syntax rules
closely resemble natural language, clinicians can verify the implemented knowledge in MLMs (more or less) easily
without in-depth knowledge of modern programming languages.

Within the context of fuzzy state monitors, we introduced fuzzy sets as mapping functions that map raw data to clinical
linguistic concepts, thereby yielding a degree of compatibility between 0 and 1. Based on these degrees, together with
degrees of applicability for each state in a fuzzy automaton, we showed that multiple transitions could occur
simultaneously, resulting in a new automaton configuration comprising (again) degrees of applicability for each state
in the fuzzy automaton.

The interpretation of the automaton results is an important aspect. It was not discussed here because it would exceed
the scope of this report and is dependent on individual applications. In the case of FuzzyArdenARDS, six parameters
need to be interpreted in a pairwise manner: oxygenation state (normal vs. hypoxic), response to high FiO2 (response
vs. no response), and response to hand bagging (improvement vs. no improvement). Given that values for each of

483

these states can be a DoC, a richer, a gradual interpretation follows from these pairwise interpretations. For instance,
when the “normal” state has a DoC of 0.3 and the “hypoxic” state a DoC of 0.7, the patient’s current oxygenation state
may be interpreted as moderately hypoxic.

The limitations of the present report are worthy of note. First, the study is limited to a single application, namely
FuzzyArdenARDS. Other fuzzy state monitors and even other types of fuzzy automata need to be implemented with
Fuzzy Arden Syntax to ensure the syntax is equipped to support a variety of fuzzy applications and methodologies.
Second, the fuzzy sets that we implemented for the FuzzyArdenARDS automaton were “two-dimensional”. In other
words, they only implemented fuzzy regions for one parameter. As some rules were defined over two parameters
(SaO2 and a time duration), three-dimensional fuzzy sets that provide more accurate modeling for these rules will
have to be implemented in the future. Finally, as of yet the program has only been tested on retrospectively collected
data.

We reported on the first steps in implementing fuzzy state monitors with Fuzzy Arden Syntax. In the future, we plan
to study and address the aforementioned limitations and continue to improve the use of Arden Syntax for real-time
monitoring.

Conclusion

The native support of fuzzy methods allows the intuitive implementation of a fuzzy state monitor for clinical
application with Fuzzy Arden Syntax.

References

1. Gaines BR, Kohout LJ. The logic of automata. Int J Gen Syst. 1976;2(4):191-208.
2. Zadeh LA. Fuzzy sets. Inform Control. 1965;8(3):338-53.
3. Klir G, Yuan B. Fuzzy sets and fuzzy logic: Theory and applications. 1st ed. New Jersey: Prentice Hall; 1995.
4. Doostfatemeh M, Kremer SC. New directions in fuzzy automata. Int J Approx Reason. 2005;38(2):175-214.
5. Adlassnig K-P. A survey on medical diagnosis and fuzzy subsets. In: Gupta MM, Sanchez E, editors.

Approximate reasoning in decision analysis. Amsterdam: North-Holland Publishing Company; 1982. p. 203-17.
6. Health Level Seven International. HL7 Arden V2.9-2013: The Arden Syntax for Medical Logic Systems Version

2.9. [Internet]. 2013 [cited 2017 Mar 6]. Available from:
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=290

7. Steltzer H, Trummer B, Höltermann W, Kolousek G, Fridrich P, Lewandowski K, Adlassnig K-P, Hammerle AF.
Wissensbasierte Diagnostik und Therapieempfehlung mit Methoden der Fuzzy-Set-Theorie bei Patienten mit
akutem Lungenversagen (ARDS). Anasthesiol Intensivmed Notfallmed Schmerzther. 1999;34(4):218-23.

8. Steimann F, Adlassnig K-P. Clinical monitoring with fuzzy automata. Fuzzy Sets Syst. 1994;61(1):37-42.
9. Hripcsak G. Writing Arden Syntax medical logic modules. Comput Biol Med. 1994;24(5):331-63.
10. Samwald M, Fehre K, de Bruin J, Adlassnig K-P. The Arden Syntax standard for clinical decision support:

Experiences and directions. J Biomed Inform. 2012;45(4):711-8.
11. Vetterlein T, Mandl H, Adlassnig K-P. Fuzzy Arden Syntax: A fuzzy programming language for medicine. Artif

Intell Med. 2010;49(1):1-10.
12. The ARDS Definition Task Force*. Acute respiratory distress syndrome: The Berlin definition. JAMA.

2012;307(23):2526-33.
13. Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning. In: Fu KS, Tou JT,

editors. Learning systems and intelligent robots. Boston, MA: Springer US; 1974. p. 1-10.
14. Medexter Healthcare. ArdenSuite – Medical Knowledge Representation and Rule-Based Inference Software with

Arden Syntax. [Internet]. 2015 [cited 2017 Mar 6]. Available from:
http://www.medexter.com/component/jdownloads/send/3-public-articles/6-ardensuite-for-emrs

15. Adlassnig K-P, Fehre K. Service-Oriented Fuzzy-Arden-Syntax-Based Clinical Decision Support. Indian J Med
Inform. 2014;8(2):75-9.

484

