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Abstract 

Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). 
With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees 
of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to 
incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden 
Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy 
automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented 
FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress 
syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., 
fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that 
fuzzy state monitors can be implemented in a straightforward manner.  

Introduction 

By definition an automaton is “an abstract state-determined machine designed to follow automatically a predetermined 
sequence of operations or respond to encoded instructions”. Automata are prime examples of general systems over 
discrete spaces [1]. The concepts of state and transition are core aspects of automata theory. The best known class of 
automata are deterministic finite-state automata, in which systems can be in exactly one of a finite number of states at 
any given time. These states are labeled using natural language concepts and/or classifications. Transitions between 
system states (i.e., linguistic concepts) are triggered by an external input, and may be presented as a function mapping 
the current state and the input into the next state [1]. 

Although the concept of a discrete state is attractive due to its simplicity in terms of implementation, it is of limited 
use for modeling situations and contexts where discrete states cannot be accurately defined using natural language 
concepts, or where knowledge about the situation is imprecise or incomplete. For instance, an individual’s health 
cannot be accurately classified by discrete, mutually exclusive concepts at the sole end of the spectrum, such as healthy 
or sick, nor would it be practical to introduce a myriad of states between these spectrum poles. To address these 
shortcomings in classification with linguistic concepts, Zadeh introduced fuzzy sets and fuzzy logic [2]. With fuzzy 
sets, the relationship between linguistic terms and measured or observed data is expressed as a degree of compatibility 
(DoC) calculated by fuzzy membership functions rather than a discrete, dichotomous classification. In this context, a 
DoC formally models the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to 
incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic, allowing for 
approximate reasoning instead of exact rule inference.  

The incorporation of fuzzy sets and fuzzy logic into automata gives rise to the notion of fuzzy automata, which are 
able to handle uncertainty and continuous space [3,4]. With fuzzy automata, a system can be in more than one state at 
the same time, whereby the applicability (or membership) of each state is expressed as a DoC. Because of this multi-
state membership, multiple simultaneous transitions of state are also possible. The system as a whole is far more 
expressive because the potentially endless combinations of state values (i.e., applicability of linguistic concepts) can 
imply richer, more abstract linguistic concepts. Furthermore, multiple (partial) parallel transitions cause transitions 
between linguistic concepts to be more gradual and thus more intuitive. 

Given the properties of fuzzy automata discussed above, they are well suited for the use in (automated) clinical 
monitors [5]. In clinical monitoring, streams of patient data are measured in (occasionally brief) time intervals and 
presented to the clinician. Given the increasing body of patient data being measured in various time intervals, the 
monitor is growing more complex, both in terms of the number of presented data elements as well as the interpretation 
of combinations of different data elements. In other words, the more powerful a monitor becomes (from a functional 
perspective), the greater is the risk of errors of omission in the interpretation of data. By using a fuzzy automaton in 
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clinical monitoring for the interpretation and aggregation of measured patient data over time, the dimensionality of 
input data can be reduced and presented in semantically meaningful, clinically relevant linguistic concepts over fixed 
time intervals, along with a gradual indication of their applicability to the patient. 

Standardized technical communication with hospital information systems and electronic health records is an equally 
important element of meaningful semantic communication with users. The acceptance and dissemination of the 
aforementioned monitoring systems could be improved by employing known communication standards, especially 
when the systems are to be embedded into existing clinical monitors. A widely used standard for computerized 
knowledge representation and processing is Arden Syntax [6], which is a programming language for the collection, 
description, and processing of medical knowledge in a machine-executable format. Since Arden Syntax version 2.9 
was augmented by formal constructs based on fuzzy set theory and fuzzy logic, it is now possible to implement a 
fuzzy automaton in a clinical system using a standard that intrinsically supports fuzzy methods. 

In this paper, we report our preliminary experience concerning the implementation of a clinical fuzzy automaton using 
Arden Syntax 2.9 (Fuzzy Arden Syntax). As a use case we re-implemented a previously published monitoring system 
named FuzzyARDS [7], which is a clinical monitoring system for patients suffering from acute respiratory distress 
syndrome (ARDS) and is based on the DiaMon-1 framework [8]. For easier comprehension, we provide an overview 
of Arden Syntax and the fuzzy methods incorporated in Fuzzy Arden Syntax, as well as a short description of the 
DiaMon-1 framework and the FuzzyARDS monitor. Then, using the re-implementation of parts of the FuzzyARDS 
monitor (referred to henceforth as FuzzyArdenARDS) as an example, we show how key concepts of fuzzy automata, 
such as fuzzy states and parallel fuzzy state transitions can be implemented in Fuzzy Arden Syntax.  

Methods 

Arden Syntax 

Arden Syntax is a standard for computerized medical knowledge representation and processing. Arden Syntax 
knowledge bases are fragmented into medical logic modules (MLMs), which are collections of medical rules and 
knowledge for the purpose of making at least one medical decision [9]. Several properties make Arden Syntax well 
suited for the computerized representation of medical knowledge [10]. In fact, the program code in Arden Syntax 
resembles natural language. Thus MLMs are understood more easily by healthcare professionals. Moreover, pure 
medical knowledge is separated from more technical processing, which improves code transparency. Finally Arden 
Syntax supports various data types specific to medical documentation, such as time and duration types. 

A complete overview of Arden Syntax is beyond the scope of this paper. However, for comprehension of the examples 
presented in this paper we will provide a short overview of Fuzzy Arden Syntax. For a complete description we refer 
to the Arden Syntax version 2.9 specification [6].  

Each Arden Syntax MLM is hierarchically structured. At the top level an MLM is divided into the categories of 
maintenance, library, knowledge, and resources. Each of these categories contains category-specific slots. Slots in the 
maintenance category enable the MLM author to provide metadata on the MLM, such as the MLM title, author, or 
version. Slots in the library category provide contextual information about the MLM, such as the purpose of the MLM, 
an explanation of its functionality, and evidence-based resource citations. The medical knowledge of the MLM is 
implemented in the knowledge category. In the data slot, MLM parameters can be assigned to variables, and data from 
external sources can be obtained through curly braces expressions. The MLM’s program logic is implemented in the 
logic slot. Apart from implementing logic, processing can also be deferred through the invocation of other MLMs. 
Execution ends with a concluding statement which, if considered true, results in the execution of the action slot. 
Finally, localized messages can be constructed through the optional definition of the resources category. 

Fuzzy Arden Syntax 

Since version 2.9, the Arden Syntax supports formal constructs based on fuzzy set theory and fuzzy logic. We will 
present a selection of fuzzy extensions implemented in Fuzzy Arden Syntax in this section. Note that this is not a 
complete overview of all fuzzy concepts implemented in Fuzzy Arden Syntax; for a detailed description of fuzzy 
constructs implemented in Fuzzy Arden Syntax we refer to previously published work [11]. 

The truth value model of Arden Syntax was expanded in order to extend traditional methods of calculation and logic. 
Prior to version 2.9, the truth value model was dichotomous, supporting only the values “true” and “false”. However, 
truth values in Fuzzy Arden Syntax may now constitute any value in the range [0, 1]. True and false still exist in this 
model as the extremes of the range: “false” has a truth value of 0, whereas “true” has a truth value of 1. Based on this 
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truth value model, Fuzzy Arden Syntax incorporates fuzzy set data types, built-in propositional fuzzy logic operators, 
and degrees of applicability of conditional branches.  

The fuzzy set data type can be used to model and quantify the unsharpness of boundaries in definitions of linguistic 
concepts. A fuzzy set is declared with two or more value tuples which define the fuzzy region(s). From these tuples, 
a linear membership function is constructed for the fuzzy set, which is used to calculate the DoC of measured or 
observed data with respect to the clinical linguistic concept under consideration. 

With fuzzy logic operators, propositional uncertainty in relationships between linguistic clinical concepts can be 
modeled implicitly. Three basic propositional fuzzy logic operations are implemented in Fuzzy Arden Syntax – 
negation, conjunction, and disjunction. These are equipped to handle all truth values in the extended truth value model. 
By default, negation of a concept is implemented as 1 minus the truth value of that concept. The standard minimum 
function is used as the fuzzy conjunction operator, and the standard maximum function is used as the fuzzy disjunction 
operator. 

The new truth value model called for an extension of the evaluation mechanism for conditional branches. Whereas 
only one conditional branch was executed at a time in the traditional model, in the extended model each branch whose 
condition amounts to non-zero is executed in parallel. To this end, all simple data types have a degree of applicability, 
which is set to 1 by default. However, when the program execution splits into multiple parallel branches, each branch 
is provided with its own set of duplicated variables, and each variable is assigned a degree of applicability which is 
equal to the relative truth value of the respective branch’s conditional expression. After execution of all conditional 
branches, variable values can either be aggregated or not. When the branches are aggregated (through the aggregate 
keyword at the end of the conditional block), duplicated variables are joined using a weighted average (applicability 
multiplied by the variable value). If not aggregated, the MLM will conclude with multiple return values, each with its 
own applicability. 

As an example, consider the Fuzzy Arden Syntax MLM below in which we use fuzzy sets to classify the severity of 
ARDS. For the sake of brevity, we have confined the example to the knowledge category. 

1   maintenance:  […] 

2   library:      […] 

3   knowledge: 

4     type:    data_driven;; 

5     data:    (pao2, fio2) :=  argument;; // blood gas and inspiration 

6     priority:  ;; 

7     evoke:   ;; 

8     logic: 

9       // Fuzzy set definitions 

10      ARDS_severe := fuzzy set (100,1), (110,0); 

11      ARDS_moderate := fuzzy set (100,0), (110,1), (190,1), (200,0); 

12      ARDS_mild := fuzzy set (190,0), (200,1), (300,1), (310,0); 

13 

14      // Parameter analysis 

15      if ((pao2 / fio2) is in ARDS_severe) then 

16        msg := "Patient suffers from severe ARDS."; 

17      elseif ((pao2 / fio2) is in ARDS_moderate) then 

18        msg := "Patient suffers from moderate ARDS."; 
19      elseif ((pao2 / fio2) is in ARDS_mild) then 

20        msg := "Patient suffers from mild ARDS."; 
21      endif; 

22 

23      // Program conclusion 

24      conclude true;; 

25    action: return msg;; 

26    urgency: ;; 

27  end: 
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The logic in this MLM is based on the most recent ‘Berlin Definition’ of ARDS published in 2012 [12]. According to 
this definition, the severity of ARDS is determined by the ratio of partial arterial oxygen pressure (PaO2) and the 
fraction of inspired oxygen (FiO2). Based on the resulting outcome, ARDS is characterized as either mild (200 < 
PaO2/FiO2 ≤ 300), moderate (100 < PaO2/FiO2 ≤ 200), or severe (PaO2/FiO2 ≤ 100). However, patients with 
measured values close to these thresholds are also of interest. As such, we created fuzzy sets for all characterizations 
that extend beyond the defined thresholds (lines 10-12). Next, the PaO2/FiO2 ratio is compared with each fuzzy set, 
and the resulting truth values serve as conditions in conditional branches (lines 15-21). In case multiple truth values 
are non-zero, each of these conditional branches is executed. Furthermore, as the branches are not aggregated, this 
would cause the MLM to return multiple copies of msg, each with its own degree of applicability. For example, if 
PaO2/FiO2 were 106, this would cause the “severe ARDS” message to be returned with an applicability of 0.4 and 
the “moderate ARDS” message to be returned with an applicability of 0.6. This could be interpreted as a patient’s 
ARDS being between the “moderate” and “severe” state. 

FuzzyArdenARDS and DiaMon-1 

The FuzzyArdenARDS application was re-implemented based on the original FuzzyARDS automaton, which was 
constructed using the DiaMon-1 framework as discussed in [7,8]. This formal framework was developed in order to 
design monitors capable of abstracting continuously supplied, objectively observed raw data into aggregated, 
qualitative, linguistic concepts, such as stages of disease. Furthermore, monitors developed with this framework 
provide early indication of improvement in, or deterioration of, a patient’s health status because the monitors include 
smooth transitions between stages. 

Applications in the DiaMon-1 framework are referred to as state monitors, which employ fuzzy automata to observe 
gradual transitions between different stages of disease. In this context, a state represents a (linguistic) representation 
of a patient’s health status or a specific stage of disease. Transitions provide possible pathways between states or 
stages, which are triggered by inputs such as time or measured data.  

A fuzzy state monitor SM is formally defined as a 6-tuple 𝑆𝑆𝑆𝑆���� = (𝑄𝑄, 𝑞𝑞�0,𝑋𝑋, 𝛿𝛿,𝑃𝑃, 𝑓𝑓). In this definition, the first four 
parameters jointly constitute the underlying fuzzy automaton: Q denotes a finite set of states, 𝑞𝑞�0is a (potentially) fuzzy 
subset of Q that marks the initial state, X is a finite set of input symbols, while δ: Q × X → Q is a transition function 
that maps states and inputs onto states. Furthermore, P is the parameter value space over all observed parameters: p1 
×…× pn, and f is a mapping function that maps parameter tuples from P to a fuzzy subset of X. 

Calculation of the monitor state at time point t (𝑞𝑞�𝑡𝑡) proceeds through an inductive function based on 𝑞𝑞�𝑡𝑡−1, δ, and f. 
Suppose that at time point t, f  yields fuzzy subset 𝑓𝑓𝑓𝑓�𝑡𝑡, which is a collection of truth values for all x ∈ X. Then, using 
the extension principle [13], the state for each q ∈ Q at time point t, 𝑞𝑞�𝑡𝑡(𝑞𝑞), can be calculated as follows: 
 

𝑞𝑞�𝑡𝑡(𝑞𝑞) = �
��𝑞𝑞�𝑡𝑡−1(𝑞𝑞′) ∧  𝑓𝑓𝑓𝑓�𝑡𝑡(𝑥𝑥)�𝛿𝛿(𝑞𝑞′, 𝑥𝑥) = 𝑞𝑞, 𝑞𝑞′ ∈ 𝑄𝑄, 𝑥𝑥 ∈ 𝑋𝑋� 𝑖𝑖𝑓𝑓 𝛿𝛿−1(𝑞𝑞) ≠ ∅

0 𝑖𝑖𝑓𝑓 𝛿𝛿−1(𝑞𝑞) = ∅
 

 
For the FuzzyArdenARDS application, the automaton states Q are shown in Table 1.  
 
Table 1. Definition of the fuzzy automaton states in FuzzyArdenARDS. 

State Description 

Start Initial state 

Normal Oxygenation is satisfactory, no additional effort needed. 

Hypoxic Oxygenation is too low. 

Responding to high FiO2 Oxygenation was positively affected by high FiO2. 

Not responding to high FiO2 High FiO2 did not have a desired effect. 

Improved after hand bagging Manual oxygenation through hand bagging has improved oxygenation. 

Not improved after hand bagging Hand bagging did not have the desired effect. 

  Note: FiO2, fraction of inspired oxygen. 
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As initial state 𝑞𝑞�0, the truth value for the Start state is 1, and 0 for all others. The set of input symbols X comprises 
{adequate oxygenation, hypoxemia, high FiO2, low FiO2, rapidly improving oxygenation, slowly decreasing 
oxygenation}. The set of fuzzy state transition rules δ is shown in Table 2.  
 
Table 2. Definition of the fuzzy state transition rules in FuzzyArdenARDS. 

Rule Begin state Transition 
condition 

End state 

1 Start Adequate 
oxygenation 

Normal 

2 Start Hypoxemia Hypoxic 

3 Normal Hypoxemia Hypoxic 

4 Hypoxic Low FiO2 ∧ 
Adequate 
oxygenation 

Normal 

5 Hypoxic High FiO2 ∧ 
rapidly improving 
oxygenation 

Responding to 
high FiO2 

6 Hypoxic High FiO2 ∧ 
hypoxemia 

Not responding 
to high FiO2 

7 Responding to 
high FiO2 

Low FiO2 ∧ 
slowly decreasing 
oxygenation 

Improved after 
hand bagging 

8 Responding to 
high FiO2 

Low FiO2 ∧ 
hypoxemia 

Not improved 
after hand 
bagging 

9 Not responding 
to high FiO2 

Low FiO2 ∧ 
hypoxemia 

Hypoxic 

10 Not responding 
to high FiO2 

High FiO2 ∧ 
adequate 
oxygenation 

Responding to 
high FiO2 

11 Improved after 
hand bagging 

Adequate 
oxygenation 

Normal 

12 Improved after 
hand bagging 

Hypoxemia Hypoxic 

13 Not improved 
after hand 
bagging 

Hypoxemia Hypoxic 

  Note: FiO2, fraction of inspired oxygen; ∧, fuzzy logical conjunction operator (minimum function). 
 
Three parameters have been considered for P: time, oxygen saturation SaO2 (as a noninvasive alternative to measuring 
PaO2), and FiO2. Finally, rules for fuzzy sets based on time, SaO2 and FiO2, which jointly constitute f are presented 
in Table 3.  
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Table 3. Definition of the fuzzy automaton parameter-to-input symbol mapping in FuzzyArdenARDS. 

Input symbol Rule (Start of fuzzy region) 

Adequate oxygenation SaO2 above 97% (93%) for 5 minutes 

Hypoxemia SaO2 between 90% (87%) and 93% (97%) for 2 
minutes 

High FiO2 FiO2 above 60% for 30 seconds 

Low FiO2 FiO2 below 60% for 30 seconds 

Rapidly improving oxygenation SaO2 increasing from 87–95% (85–99%) to 97–100% 
(93–100%) within 30–90 seconds 

Slowly decreasing oxygenation SaO2 above 96% (91%) steady or decreasing to 94% 
(89%) within 25 minutes 

Note: SaO2, oxygen saturation; FiO2, fraction of inspired oxygen. 
 

Data processing 

The MLMs discussed in this report were created with the ARDENSUITE software [14,15]. The ARDENSUITE is a 
framework for medical knowledge representation and reasoning, which comprises an integrated development and test 
environment (IDE) and an ARDENSUITE server, including software modules for interconnecting with data sources 
(Figure 1). 

 

Figure 1. Graphic depiction of the ARDENSUITE framework. Image adapted from [15]. 

With the ARDENSUITE IDE, users can write and compile MLMs via the authoring tool. If test data are available, users 
can also immediately test the implemented MLMs. After compilation, the MLMs are uploaded to the administration 
module of the ARDENSUITE server. The administration module is a management tool for compiled Arden Syntax 
projects and supports functionalities such as the activation or deactivation of MLMs in an application, or MLM version 
management. The core element of the ARDENSUITE server is the ARDENSUITE engine, which executes compiled 
MLMs. To facilitate access to MLM functionalities by arbitrary clients, the server provides service-oriented access 
through a web-service component. Using this component, MLM calls and data exchange are facilitated through the 
Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) web-service standards. Web-
service standards can also be used to connect the ARDENSUITE server with SOAP/REST-compatible external database 
sources through the ARDENSUITE server connector. With this module, external data sources can be accessed directly 
from within MLM files using query languages (such as SQL), which are then forwarded to the source data base 
management system using SOAP or REST web services. 
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Results 

In this section, we discuss parts of the resulting MLM implementation of FuzzyArdenARDS. We implemented the 
core of the FuzzyArdenARDS application in two MLMs. In the first MLM, fuzzy sets are defined and truth values 
calculated using the SaO2 and FiO2 parameters. Each parameter is supplied as a list of values over the last half hour. 
The MLM is designed for semi-real-time processing, and is called every 30 seconds, thus analyzing 30 seconds of 
data at a time. Again, for the sake of brevity, we have confined the MLMs listed below to the knowledge category. 

1   maintenance:  […] 

2   library:      […] 

3   knowledge: 

4     type:    data_driven;; 

5     data:    (sao2, fio2):= argument;; 

6     priority:   ;; 

7     evoke:    ;; 

8     logic:  

9       // Fuzzy set definitions 

10      fs_adeq_oxy := fuzzy set (0.93,0), (0.97,1); 

11      fs_hypoxemia := fuzzy set (0.87,0), (0.9,1), (0.93, 1), (0.97,0); 

12      fs_rio_begin := fuzzy set (0.85,0), (0.87,1), (0.95, 1), (0.99,0); 

13      fs_rio_end := fuzzy set (0.93,0), (0.97,1); 

14      fs_sdo_begin := fuzzy set (0.91,0), (0.96,1); 

15      fs_sdo_end := fuzzy set (0.89,0), (0.94,1); 

16 

17      // Parameter analysis 

18      sao2_5mins := sao2 where they occurred within the past 330 seconds; 

19      ade_oxy := minimum (sao2_5mins in fs_adeq_oxy); 

20 

21      sao2_2mins := sao2 where they occurred within the past 150 seconds; 

22      hypoxemia := minimum (sao2_2mins in fs_hypoxemia); 

23 

24      fio2_30secs := fio2 where they occurred within the past 60 seconds; 

25      high_fio2 := minimum (fio2_30sec) > 60; 

26      low_fio2 := maximum (fio2_30sec) < 60; 

27 

28      sao2_30secs := sao2 where they occurred within the past 30 seconds; 

29      for sao2_element in sao2_30secs do 

30        reference_list := sao2 where  

31          ((time of sao2_element) - (time of them)) is within 30 seconds to 90 seconds; 

32        for sao2_ref_element in reference_list do 

33          lmax_tv := sao2_ref_element is in fs_rio_begin and sao2_element is in fs_rio_end; 

34          rio := maximum (rio, lmax_tv); 

35        enddo; 

36      enddo; 

37 

38      sdo := 0; 

39      for sao2_element in sao2_30secs do 

40        reference_list := sao2 where  

41          ((time of sao2_element) - (time of them)) is not greater than 25 minutes;  

42        for sao2_ref_element in reference_list do 

43          lmax_tv := sao2_ref_element is in fs_sdo_begin and sao2_element is in fs_sdo_end; 

44          sdo := maximum (sdo, lmax_tv);  

45        enddo; 

46      enddo; 

47      conclude true;; 
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In the above MLM code snippet, truth values are calculated for each of the symbols in X. First, all fuzzy sets are 
defined (lines 10-15). Then the truth value is calculated for the symbol adequate oxygenation. For this purpose, we 
first need to obtain SaO2 values for the last 5½ minutes; 30 seconds for evaluation and 5 minutes thereafter to calculate 
the truth value for all data in the evaluation phase according to the mapping in Table 3 (line 18). We then apply the 
data to the defined fuzzy set and take the minimum truth value as an aggregate result for the last 30 seconds (line 19). 
In a similar fashion, truth values are calculated for the symbols hypoxemia (lines 21-22), high FiO2, and low FiO2 
(lines 24-26). For the symbol rapidly improving oxygenation, a slightly different approach is needed. First, data 
elements for the first 30 seconds for evaluation are isolated (line 28). For each of the data elements, we then select 
prior elements or data elements within a period of 30-90 seconds before the timestamp of the analyzed elements (line 
29-31). Data elements of both lists are applied pairwise to their respective fuzzy sets, and a logical conjunction of each 
pair is calculated (line 32-33). Finally, the maximum of all pairwise logical conjunctions is chosen as an aggregate 
value for the symbol rapidly improving oxygenation (line 34). In a similar fashion, a truth value is calculated for the 
symbol slowly decreasing oxygenation with a time period of 25 minutes. 
 
The second MLM is used to perform the transitions. As parameters, a list of truth values for each state and a list of 
truth values for each input symbol are provided. Due to space constraints, we only show that part of the MLM 
implementation dealing with the transitions for the end states Start, Normal, and Hypoxic. 

1   maintenance:  […] 

2   library:   […] 

3   knowledge: 

4     type:  data_driven;; 

5     data:  

6       // States (array indices) enumerations: 

7       AutomStates := OBJECT [Start, Normal, Hypoxic, RespHighFiO2,  

8         NotRespHighFiO2, ImpAfterHandBagging, NotImpAfterHandBagging];  

9       states := new AutomStates with 1 seqto 7; 

10  

11      // Inputs (array indices) enumerations: 

12      AutomInputs := OBJECT [AdequateOxy, Hypoxemia, HighFiO2,  

13        LowFiO2, RapidImpOxygenation, SlowDecOxygenation];  

14      inputs := new AutomInputs with 1 seqto 6;  

15  

16      (state_tvs, input_tvs) := Argument;; 

17  

18    logic:  

19      // Start state has no incoming transitions  

20      state_start := 0;       

21  

22      // Normal state has three incoming transitions:  

23      state_normal :=  

24        // Rule 1: Start and adequate oxygenation 

25        (state_tvs[states.Start] as truth value and  

26         input_tvs[inputs.AdequateOxy] as truth value)  

27        or 

28        // Rule 4: Hypoxic and low FiO2 and adequate oxygenation 

29        (state_tvs[states.Hypoxic] as truth value and  

30         input_tvs[inputs.LowFiO2] as truth value and  

31         input_tvs[inputs.AdequateOxy] as truth value)  

32        or 

33        // Rule 11: Improved after hand bagging and adequate oxygenation 

34        (state_tvs[states.ImpAfterHandBagging] as truth value and  

35         input_tvs[inputs.AdequateOxy] as truth value); 

36  

37        // Hypoxic state has five incoming transitions:  
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38        state_hypoxic :=  

39          // Rule 2: Start and hypoxemia 

40          (state_tvs[states.Start] as truth value and  

41           input_tvs[inputs.Hypoxemia] as truth value)  

42          or  

43          // Rule 3: Normal and hypoxemia 

44          (state_tvs[states.Normal] as truth value and  

45           input_tvs[inputs.Hypoxemia] as truth value)  

46          or  

47          // Rule 9: Not responding to high FiO2 and low FiO2 and hypoxemia 

48          (state_tvs[states.NotRespHighFiO2] as truth value and  

49           input_tvs[inputs.LowFiO2] as truth value and  

50           input_tvs[inputs.Hypoxemia] as truth value)  

51          or  

52          // Rule 12: Improved after hand bagging and hypoxemia  

53          (state_tvs[states.ImpAfterHandBagging] as truth value and  

54           input_tvs[inputs.Hypoxemia] as truth value)  

55          or 

56          // Rule 13: Not improved after hand bagging and hypoxemia  

57          (state_tvs[states.NotImpAfterHandBagging] as truth value and  

58           input_tvs[inputs.Hypoxemia] as truth value); 

59  

… 

… 

Truth values for the seven states in Q are calculated in the MLM shown above. First, to improve MLM readability we 
constructed objects that enumerate the indices of the state and input value lists supplied through the argument (lines 
6-16). The calculation of truth values for each state starts thereafter. By definition, the Start state is only true at the 
first iteration of the automaton, followed by 0, as it has no incoming transitions. For each other state, the truth value 
is determined by a logical disjunction over all rules in Table 2 that have the respective state as an end state. The truth 
value for each rule, on the other hand, is calculated by a logical conjunction over the truth values of the state and 
transition conditions. As such, for the Normal state a logical disjunction is calculated over transition rule 1 (lines 25-
26), rule 4 (lines 29-31), and rule 11 (lines 34-35). The truth values for the other states are calculated in a similar 
fashion.  

Discussion 

In the present report, we showed how fuzzy state monitors as defined in [8] could be implemented using fuzzy methods 
supported by Fuzzy Arden Syntax, a standard for computerized knowledge representation and processing. When 
designing a clinical knowledge base, knowledge engineers work closely together with clinicians to construct the rules. 
However, the translation process from natural language to a computerized knowledge representation may be prone to 
error. The average clinician may be unable to, or not interested in, the validation of source code. The original 
FuzzyARDS program was written in a dialect of the object-oriented language Smalltalk, which is neither considered 
a mainstream medium nor is easily understood by those untrained in its application. Given that Arden Syntax rules 
closely resemble natural language, clinicians can verify the implemented knowledge in MLMs (more or less) easily 
without in-depth knowledge of modern programming languages. 

Within the context of fuzzy state monitors, we introduced fuzzy sets as mapping functions that map raw data to clinical 
linguistic concepts, thereby yielding a degree of compatibility between 0 and 1. Based on these degrees, together with 
degrees of applicability for each state in a fuzzy automaton, we showed that multiple transitions could occur 
simultaneously, resulting in a new automaton configuration comprising (again) degrees of applicability for each state 
in the fuzzy automaton.  

The interpretation of the automaton results is an important aspect. It was not discussed here because it would exceed 
the scope of this report and is dependent on individual applications. In the case of FuzzyArdenARDS, six parameters 
need to be interpreted in a pairwise manner: oxygenation state (normal vs. hypoxic), response to high FiO2 (response 
vs. no response), and response to hand bagging (improvement vs. no improvement). Given that values for each of 
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these states can be a DoC, a richer, a gradual interpretation follows from these pairwise interpretations. For instance, 
when the “normal” state has a DoC of 0.3 and the “hypoxic” state a DoC of 0.7, the patient’s current oxygenation state 
may be interpreted as moderately hypoxic.  

The limitations of the present report are worthy of note. First, the study is limited to a single application, namely 
FuzzyArdenARDS. Other fuzzy state monitors and even other types of fuzzy automata need to be implemented with 
Fuzzy Arden Syntax to ensure the syntax is equipped to support a variety of fuzzy applications and methodologies. 
Second, the fuzzy sets that we implemented for the FuzzyArdenARDS automaton were “two-dimensional”. In other 
words, they only implemented fuzzy regions for one parameter. As some rules were defined over two parameters 
(SaO2 and a time duration), three-dimensional fuzzy sets that provide more accurate modeling for these rules will 
have to be implemented in the future. Finally, as of yet the program has only been tested on retrospectively collected 
data. 

We reported on the first steps in implementing fuzzy state monitors with Fuzzy Arden Syntax. In the future, we plan 
to study and address the aforementioned limitations and continue to improve the use of Arden Syntax for real-time 
monitoring. 

Conclusion 

The native support of fuzzy methods allows the intuitive implementation of a fuzzy state monitor for clinical 
application with Fuzzy Arden Syntax.  
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