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Abstract CADIAG-II is a functioning experimental fuzzy expert system for
computer-assisted differential diagnosis in internal medicine. To overcome the cur-
rent limitations of the system, we propose an extension based on bilattices. The
proposed changes were implemented and reviewed in a retrospective evaluation of
3,131 patients with extended information about patient’s medical history, physical
examination, laboratory test results, clinical investigations and – last but not least –
clinically confirmed discharge diagnoses.

1 Introduction

1.1 Background

Computer-based support of medical diagnosis and treatment has a long tradition.
Early approaches were based on statistical methods such as Fisher’s discriminant
analysis to classify symptom patterns into diseased or non-diseased categories [39].
Others used Bayes’ theorem to assign probabilities to the possible presence of dis-
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eases [20, 38]. The first medical expert system was MYCIN [34], whose purpose
was to give advice for the diagnosis and the treatment of patients with infectious
diseases. Equipped with a well-grounded heuristic rule-based approach to determine
diagnostic and therapeutic proposals, MYCIN was extensively tested; its perfor-
mance was comparable to that of humans [41]. A variety of logical and probabilistic
reasoning approaches in medical diagnosis have been compared in [36]. Artificial
intelligence methods and systems for medical consultation were discussed, among
others, in [11, 25]; an extended threaded bibliography was provided in [30, 40].
CADIAG-I and CADIAG-II were also early approaches to provide differential di-
agnostic support. Based on logical approaches described in the seminal paper by
Ledley and Lusted [26], CADIAG-I was extended in several subsequent versions [4].
CADIAG-II employs fuzzy sets and fuzzy logic, as described in this report, and gave
rise to a variety of refined modeling approaches [13–17,22,31,32,37]. It was exten-
sively tested in various fields of clinical application [3,6,27–29]. Recent approaches
to clinical decision support for the selection of diagnosis and therapy mainly consist
of machine learning and “big” data approaches. Successful applications include im-
age pattern recognition in fields such as radiology [10] and pathology [33]. IBM’s
Watson for oncology is one of many recent machine learning system approaches; its
aim is to provide recommendations for the treatment of breast cancer. However, its
success appears to be limited [35].

1.2 CADIAG Systems

Computer-Assisted DIAGnosis (CADIAG) systems are data-driven, rule-based ex-
pert systems for computer-assisted consultation in internal medicine [1, 4, 7, 12].
Their development dates back to the early 1980s at the University of Vienna Med-
ical School (now Medical University of Vienna). The systems provide diagnostic
hypotheses as well as confirmed and excluded diagnoses in response to the input of
a list of symptoms, signs, laboratory test results, and clinical findings pertaining to
a patient. When possible, they also explain the indicated conclusions and propose
further useful examinations.
The first system of the family – CADIAG-I – dealt with three-valued logical vari-

ables (present, unknown, absent) and IF-THEN relationships between given three-
valued input on the one hand and diagnoses on the other. Kleene’s logic provides
all the necessary formal definitions, see also [4]. However, the real-world patient’s
input (symptoms, interpreted signs, laboratory test results, and clinical findings) is
usually inherently (linguistically) vague and necessarily includes borderline cases.
Moreover, a large part of the given medical knowledge about definitional, causal, sta-
tistical, and heuristic relationships between a patient’s input and described diseases
is intrinsically uncertain. Measurements are sometimes imprecise, linguistic cate-
gories are characterized by fuzzy borderlines, the co-occurrence of symptoms and
diseases is stochastically uncertain, and both medical data and medical knowledge
are often incomplete. Therefore, computer systems for medical decision-making
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usually cannot generate clinically accurate results when based on formal systems
whose objects can only be either absolutely true, absolutely false, or unknown (as
in Kleene’s logic). The successor system CADIAG-II can process both definite and
uncertain information. CADIAG-II is based on fuzzy set theory [43] to deal with
linguistic medical terms, and on fuzzy logic to define and process weighted IF-THEN
rules [14].
Despite this improvement, CADIAG-II has been criticized for its inability to deal

with negative evidence [16], and with rules diminishing the certainty of a particular
diagnosis apart from complete exclusion.

1.3 Objective

The aim of the present report is to introduce an extension of CADIAG-II, which
includes negative knowledge, and experimentally evaluate the presented proposal.
An earlier attempt confined to theory was published in [17]. Here we introduce Bi-
lattice CADIAG-II, an extension of CADIAG-II based on bilattices, and validate the
theoretical results by means of a retrospective evaluation in a newly-programmed
CADIAG-II implementation. The data of 3,131 patients, including extended med-
ical histories, physical examinations, and laboratory and clinical test results were
analyzed with the original CADIAG-II and with Bilattice CADIAG-II. The results
were compared with the corresponding clinically confirmed diagnoses at the time
of discharge. All underlying real patient data including the corresponding clinical
discharge diagnoses originate from a hospital near Vienna. In addition to preserving
all the inference results of CADIAG-II, Bilattice CADIAG-II was able to infer the
absence of 679 diseases which could not be inferred by CADIAG-II previously.
We believe that creating a new knowledge base explicitly designed for Bilattice

CADIAG-II, whichwouldmake extensive use of negative rules and counter-evidence
for a medical conclusion other than total exclusion, could still further improve the
(already very good) performance of Bilattice CADIAG-II.
After introducing the backgrounds of the CADIAG-II system, we discuss the

basics of bilattices and present Bilattice CADIAG-II. We then provide an overview
of its implementation, describe the results of the retrospective evaluation, and discuss
the performance of the presented extension.

2 Background – CADIAG-II

2.1 Overall Consultation Process

Inferring a diagnosis from a given set of patient’s medical data in all CADIAG
implementations is achieved in four steps, which are shown in Fig. 1.
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Fig. 1 The consultation process in CADIAG (from [7], p. 208)

Step 1:The physician (or some alliedmedical personnel) enters personal andmed-
ical data about the patient. These usually consist of detailed observational data, such
as the medical history, signs from physical examinations, quantitative laboratory test
results, and the outcome of clinical investigations (e.g., X-ray and ultrasonography).
CADIAG makes a clear distinction between patient-recounted, physician-reported,
and laboratory-measured data and their abstraction as clinical, usually linguistic
terms applied in diagnostic discourse.

Step 2: A transformation step named data-to-symbol conversion abstracts or
aggregates patient information into clinical terms [8]. Aggregation combines one
or more documentation items from the electronic health record into an abstract
symptom, sign, laboratory or clinical result using logical operators. Here, two-
valued Boolean logic is applied. Abstraction is used to transform quantitative test
results into abstract medical concepts, and give them a particular evidence value
∈ [0, 1]. An example of an abstracted symptom is ‘elevated serum glucose level’,
which is set according to the quantitative result of the glucose test and the definition
of elevated. The formal modeling of semantic medical concepts such as ‘elevated’
that considers their inherent unsharpness of boundaries in linguistic concepts, visible
in their gradual transition to adjacent medical concepts, is based on fuzzy set theory.
Fuzzy sets are defined by membership functions, which assign to every symptom
𝑆𝑖 a degree of membership 𝜇𝑆𝑖 . These degrees express the level of compatibility of
the measured concrete value with the semantic concepts under consideration. They
range from zero to unity, wherein zero stands for ‘not compatible’ and unity for ‘fully
compatible’ (see Fig. 2).

Step 3: Starting with the set of medical entities and their corresponding evidence
values generated by data-to-symbol conversion, CADIAG infers sets of confirmed
diagnoses, diagnostic hypotheses, excluded diagnoses, and unexplained findings. The
basic concept CADIAG-II’s inference mechanism relies upon is the compositional
rule of fuzzy inference [42], which allows inference under uncertainty. The rules
contained in the knowledge base are iteratively applied to the set of medical entities
pertaining to the patient until a fixpoint is reached.
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Fig. 2 Symbolic representation of medical entities using fuzzy sets (from [7], p. 211)

Step 4: In addition to the diagnostic results, CADIAG proposes a list of useful
examinations that will possibly confirm or exclude some of the generated diagnostic
hypotheses. The generated diagnostic results are explained in detail by a separate
explanatory system.

2.2 Knowledge Representation

Definitional, causal, statistical, or heuristic relationships between single and com-
pound fuzzy logical antecedents (left-hand side) and consequences (right-hand side)
are represented as IF-THEN rules. Rules with a single medical entity as antecedent,
such as a symptom or an abstracted laboratory test result, express associations be-
tween two medical entities. Compound antecedents are represented as combinations
of medical entities connected by and, or, and not, as well as the operators at least
and at most. They permit the definition of pathophysiological states as well as the
incorporation of specific complex, but medically well-known criteria for diagnos-
ing diseases. The associations between the IF- and the THEN-part of the rules are
characterized by two kinds of relationships: the frequency of occurrence (FOO) of
the antecedent with the consequence, and the strength of confirmation (SOC) of the
antecedent for the consequence.

2.2.1 Rating of Medical Entities and Data-to-Symbol Conversion

Reported and measured medical data are always assigned their natural data type,
i.e., integers or real numbers for laboratory findings, and one of the Boolean values
TRUE or FALSE for binary data. In data-to-symbol conversion, CADIAG-II assigns
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a real number [0,1] or a ‘strength of evidence’ to every symptom by applying the two
mechanisms described in Step 2 (abstraction and/or aggregation), wherein a value
of 1 means that the corresponding symptom is fully present, while values in ]0, 1[
mean that the symptom is present in the patient to a certain degree. Symptoms that
can definitely be excluded are assigned a value of 0. A value of 𝜖 is assigned to
non-examined medical entities. Since data-to-symbol aggregation rules only operate
on Boolean data items, the operators and, or, not, at least and at most are interpreted
and applied in their natural manner.

2.2.2 Interpretation of FOO and SOC and Type of Rules

Relationships between medical entities are represented as rules being attributed
with the frequency of occurrence FOO and the strength of confirmation SOC. The
interpretation for FOO and SOC as proposed in [7] is the following: given a set of
patients P

FOO =
Σ𝑎 min{𝛼(𝑎), 𝛽(𝑎)}

Σ𝑎𝛽(𝑎)
SOC =

Σ𝑎 min{𝛼(𝑎), 𝛽(𝑎)}
Σ𝑎𝛼(𝑎)

where 𝛼(𝑎) and 𝛽(𝑎) are the degrees to which the entities 𝛼 and 𝛽 apply to a patient
𝑎, and the sum Σ𝑎 ranges over all patients in P. The patient database associated
with CADIAG-II did not contain enough patients for calculating all numbers FOO
and SOC by the above formulas. But this is true for any patient database, even for
those of large hospitals – one does not have enough data to calculate 𝑎𝑙𝑙 associations
between 𝑎𝑙𝑙 symptoms and 𝑎𝑙𝑙 diseases! For this reason, most of these values were
estimated by clinical experience of physicians and taken from published data in
medical text books and scientific medical journals. Both, FOO and SOC are real
numbers in [0,1]. Similar to evidence values, the values 0 and 1 are also specifically
interpreted in CADIAG-II. SOC = 1 ensures that the right-hand side of the rule
holds, if the IF-part is true. FOO = 1 means that the left-hand side has to occur
with the right-hand side, otherwise, the right-hand side is excluded. FOO = 0 and
SOC = 0 says that the left-hand side never occurs with the right-hand side in this
rule (and vice versa). If the IF-part is true, the right-hand side must be excluded.
According to these definitions, rules in CADIAG-II may express the following

IF-THEN relationships between two expressions 𝛼 and 𝛽:

1. 𝛼 implies 𝛽 to the degree 𝑑 ∈ (0, 1]
2. 𝛼 excludes 𝛽
3. the exclusion of 𝛼 implies the exclusion of 𝛽

Thus, a distinction is made between three groups of rules. This classification is
based on the following interpretation of FOO and SOC:

𝑐𝑑 , representing ‘confirming to the degree 𝑑’
(c𝑑) when 0 < SOC = 𝑑 ≤ 1 and 0 < FOO < 1
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𝑚𝑒, representing ‘mutually exclusive’
(me) SOC = 0 and FOO = 0

𝑎𝑜, representing ‘always occurring’
(ao) when 0 < SOC < 1 and FOO = 1

A prototype of a CADIAG-II rule would be:

𝐷77 : 𝑆𝑌𝐶7 with 𝐹𝑂𝑂 = 1.0, 𝑆𝑂𝐶 = 1.0
𝑆𝑌𝐶7 : (𝐷1 ∧ 𝑆602) ∧ ¬((𝑆1001 ∨ 𝑆758) ∨ 𝑆761),

where D77 is ‘seropositive rheumatoid arthritis, stage I’, D1 is ‘rheumatoid arthritis’,
S602 is ‘Waaler Rose test, positive’, S1001 is ‘X-ray, joints, symptoms of arthritis,
erosions’, S758 is ‘X-ray, joints, partial dislocation’, and S761 is ‘X-ray, joints, anky-
losis of the peripheral joints’.

This rule, which is of the type (𝑐𝑑), with 𝑑 = 1, is interpreted as follows

IF rheumatoid arthritis AND Waaler Rose test, positive AND
NOT (

X-ray, joints, symptoms of arthritis, erosions OR
X-ray, joints, partial dislocation OR
X-ray, joints, ankylosis of the peripheral joints

)
THEN seropositive rheumatoid arthritis, stage I

The left-hand side of the rule confirms the right-hand side or may confirm it to a
certain degree, while the left-hand side obligatorily occurs with the right-hand side
of the rule. Thus, if the IF-part is evaluated to 0, the right-hand side will be excluded.

2.2.3 Inference and Operator Usage

The central concept of CADIAG-II’s inference is the compositional rule of fuzzy in-
ference [42]. Using the strength of evidence of medical entities after data-to-symbol
conversion and all rules from the knowledge base as starting point, the inference
mechanism calculates the degree of evidence 𝜇PD for a patient 𝑃 and a particular
disease 𝐷 𝑗 using the following equations:

For hypotheses generation and confirmation:
𝜇1
𝑃𝐷

(𝑃, 𝐷 𝑗 ) = max
𝑆𝑖

𝑚𝑖𝑛{𝜇𝑃𝑆 (𝑃, 𝑆𝑖), 𝜇𝑆𝑂𝐶
𝑆𝐷

(𝑆𝑖 , 𝐷 𝑗 )} for rules of type (c𝑑)

For exclusion by present, but excluding symptoms:
𝜇2
𝑃𝐷

(𝑃, 𝐷 𝑗 ) = max
𝑆𝑖

𝑚𝑖𝑛{𝜇𝑃𝑆 (𝑃, 𝑆𝑖), 1 − 𝜇𝑆𝑂𝐶
𝑆𝐷

(𝑆𝑖 , 𝐷 𝑗 )} for rules of type (me)
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For exclusion by absent, but obligatory symptoms:
𝜇3
𝑃𝐷

(𝑃, 𝐷 𝑗 ) = max
𝑆𝑖

𝑚𝑖𝑛{1 − 𝜇𝑃𝑆 (𝑃, 𝑆𝑖), 𝜇𝐹𝑂𝑂
𝑆𝐷

(𝑆𝑖 , 𝐷 𝑗 )} for rules of type (ao)

Here, 𝜇PS denotes the strength of evidence for patient 𝑃 and a particular symptom
𝑆𝑖 , 𝜇SD denotes the FOO and SOC relationships, resp., between symptom 𝑆𝑖 and
disease 𝐷 𝑗 . For every symptom-disease relationship, i.e., for every rule in the knowl-
edge base, the minimum of 𝜇PS and 𝜇SD is interpreted as the strength of evidence
implied by a particular symptom. The overall strength of evidence for a particular
disease is calculated as the maximum of all evidences from rules indicating this
particular disease. There is one exception to this procedure: if at least one rule infers
an evidence of 0 (or exclusion), then the evidence of the corresponding disease is
always set to 0 and is thus excluded.
An additional evidence value 𝜔 is used during inference to represent contradic-

tions. If a medical entity has been proven by the inference process, i.e., set to 1, and
another rule infers exclusion or evidence of 0, then the evidence of the involved med-
ical concept is set to 𝜔 and the inference process is stopped due to this contradiction
for the involved entities. All other inferences continue to be processed.
Inference steps applying all possible rules to the available evidence are repeated

until the change of every evidence value within one inference step is less than a given
threshold (e.g., 0.01), i.e., until a fixpoint is reached. Symptom-symptom, symptom
combination-disease, and disease-disease relationships also exist, thus 𝜇𝑆𝑆 (𝑆𝑖 , 𝑆 𝑗 ),
𝜇𝑆𝐶𝐷 (𝑆𝐶𝑖 , 𝐷 𝑗 ), and 𝜇𝐷𝐷 (𝐷𝑖 , 𝐷 𝑗 ) are part of the extensive CADIAG-II knowledge
base (for details, see [2]).
For the evaluation of the truth values of complex antecedents in inference rules,

and is calculated as min, or as max, not as complement (1–x), at least 𝑖 of 𝑛 uses
the 𝑖-th smallest of 𝑛 evidence values, and at most 𝑖 of 𝑛 uses the 𝑖-th largest of 𝑛
evidence values.

3 Bilattice CADIAG-II

CADIAG-II can only express the total exclusion of a medical entity and is unable to
provide for so-called negative evidence, i.e., indicating the absence of a particular
medical entity not only with certainty but also to a certain degree. Moreover, the
syntax of CADIAG-II rules impedes the definition of rules giving graded evidence
against a medical entity, and the compositional rule of inference will always prefer
the higher rating of an entity over a lower rating (except in case of exclusion). These
properties are sometimes listed as weaknesses of the CADIAG-II system [16].
To overcome these limitations, we propose an extension of CADIAG-II which

was mainly inspired by peculiar algebraic structures known as bilattices. We provide
an introduction to the subject before explaining the proposal and its implementation.
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3.1 Algebraic Preliminaries on Bilattices

Let us start by briefly recalling the definition of lattices, which are among the most
important algebraic structures in logic [9].

Definition 1 Let 𝑆 be a non-empty set and ≤ an order relation on 𝑆. (𝑆, ≤) is known
as a lattice if, given any 𝑥, 𝑦 ∈ 𝑆, there exist in 𝑆 both the infimum (the greatest
element smaller than 𝑥, 𝑦 according to the order ≤) and the supremum (the smallest
element greater than 𝑥, 𝑦 according to the order ≤) of {𝑥, 𝑦} with respect to ≤.
The operations ∧ and ∨ defined by 𝑥 ∧ 𝑦 = 𝑖𝑛 𝑓 {𝑥, 𝑦} and 𝑥 ∨ 𝑦 = 𝑠𝑢𝑝{𝑥, 𝑦} are

known as lattice operations. A unary operation ¬ is named a negation on a lattice if,
for all 𝑥, 𝑦 ∈ 𝑆

• ¬¬𝑥 = 𝑥,
• 𝑥 ≤ 𝑦 ⇒ ¬𝑦 ≤ ¬𝑥

Definition 2 A lattice (𝑆, ≤) is considered bounded when the maximum and mini-
mum element exist in (𝑆, ≤), i.e., elements in 𝑆 which are greater (or smaller) than
any other elements of S. A bounded lattice (𝑆, ≤) is complete if, for every non-empty
𝑋 ⊆ 𝑆, inf 𝑋 and sup 𝑋 belong to 𝑆.

Example 1 Avery natural example of a complete lattice with negation is the structure
( [0, 1], ≤,¬, 0, 1) where [0, 1] is the interval of real numbers between 0 and 1; ≤ is
the usual ordering of the real numbers, and ¬𝑥 = 1− 𝑥. We will refer to this structure
as a standard real lattice.

Bilattices were introduced by Ginsberg [21] as a general framework for various
applications in artificial intelligence. The underlying concept is to deal with two order
relations. The first represents a ‘degree of truth’ and is, in fact, just a generalization
of the usual ordering of truth values in classical and in multi-valued logic. The
second ordering is meant to represent the quantity of information obtained for a
proposition. Degrees of knowledge permit representation of the difference between
‘not knowing if a proposition is true or false’ (the proposition is evaluated with the
minimum of the knowledge order) and ‘knowing that a proposition is false’ (the
proposition is evaluated with the minimum of the truth order). More formally, we
have the following:

Definition 3 Let 𝐵𝑡 = (𝐵, ≤𝑡 , 𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒) and 𝐵𝑘 = (𝐵, ≤𝑘 ,⊥,>) be complete
lattices, where B is a non-empty set, 𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒 are the minimum and maximum
for ≤𝑡 , and ⊥ and > are the minimum and maximum for ≤𝑘 .
We refer to the structure B = (𝐵, ≤𝑡 , ≤𝑘 , 𝐹𝑎𝑙𝑠𝑒, 𝑇𝑟𝑢𝑒,⊥,>) as bilattice.
A negation over B is a unary operation ¬ such that:

• ¬¬𝑥 = 𝑥

• 𝑥 ≤𝑡 𝑦 ⇔ ¬𝑦 ≤𝑡 ¬𝑥
• 𝑥 ≤𝑘 𝑦 ⇔ ¬𝑥 ≤𝑘 ¬𝑦
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As 𝐵𝑡 and 𝐵𝑘 are lattices, for each one of them we will have two corresponding
lattice operations, denoted with ∧𝑡 ,∨𝑡 and ∧𝑘 ,∨𝑘 respectively.
Note that the intended meaning of the orderings is only revealed by the notion

of negation: the truth order ≤𝑡 is indeed reverted by negation, while the knowledge
order ≤𝑘 is preserved.
A prominent example of bilattice, which will be used in the sequel, is the so

called product bilattice; see [19]. The elements of this structure are pairs, which are
intended to represent reasons for and reasons against the truth of a given proposition.

Example 2 Let L = (𝐿, ≤, 0, 1) be a complete lattice. We refer to the following
structure as the product bilattice over 𝐿

B(L) = (𝐿 × 𝐿, ≤𝑡 , ≤𝑘 , (0, 1), (1, 0), (0, 0), (1, 1)) where:

• (𝑥, 𝑦) ≤𝑡 (𝑥 ′, 𝑦′) ⇔ 𝑥 ≤ 𝑥 ′ and 𝑦′ ≤ 𝑦

• (𝑥, 𝑦) ≤𝑘 (𝑥 ′, 𝑦′) ⇔ 𝑥 ≤ 𝑥 ′ and 𝑦 ≤ 𝑦′

• (0, 1) and (1, 0) are minimum and maximum, respectively, for ≤𝑡

• (0, 0) and (1, 1) are minimum and maximum, respectively, for ≤𝑘

We may introduce a negation over B(𝐿) by letting:
¬(𝑥, 𝑦) = (𝑦, 𝑥).

Informally, given two elements of a product bilattice (i.e., two pairs of values)
𝑎 and 𝑏, the example above says that “𝑎 is less true than 𝑏” when for 𝑎 there are
fewer reasons for and more reasons against than for 𝑏, while “𝑎 is less known than
𝑏” when for 𝑎 there are both, fewer reasons for and fewer reasons against than for 𝑏.
From the relation between bilattices and lattice orderings, it is easy to establish

how bilattice operations in a product bilattice relate to the original lattice ones.
Indeed, we have:

• (𝑥, 𝑦) ∧𝑡 (𝑥 ′, 𝑦′) = (𝑥 ∧ 𝑥 ′, 𝑦 ∨ 𝑦′)
• (𝑥, 𝑦) ∨𝑡 (𝑥 ′, 𝑦′) = (𝑥 ∨ 𝑥 ′, 𝑦 ∧ 𝑦′)
• (𝑥, 𝑦) ∧𝑘 (𝑥 ′, 𝑦′) = (𝑥 ∧ 𝑥 ′, 𝑦 ∧ 𝑦′)
• (𝑥, 𝑦) ∨𝑘 (𝑥 ′, 𝑦′) = (𝑥 ∨ 𝑥 ′, 𝑦 ∨ 𝑦′)

3.2 An Extension of CADIAG-II Based on Bilattices – bCADIAG-II

We have now introduced all prerequisites to describe the proposed extension of
CADIAG-II based on bilattices (hence the name Bilattice CADIAG-II or bCADIAG-
II, for short). By applying the concept of product bilattices, we simply associate each
basic entity with not just a single degree in [0, 1] but a pair, representing reasons
for and reasons against the truth of the entity. The interpretation of these values is
as follows: a value of 0 means that we do not have evidence (or counter-evidence)
of this medical entity, while a value of 1 is interpreted as full evidence (or full
exclusion). Intermediate values denote insufficient evidence to either fully confirm
or fully exclude the entity in question.
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Since data-to-symbol conversion in CADIAG-II uses fuzzy sets and rules for
more or less evident (borderline) symptoms (and none for more or less excluded
symptoms), we do not have any direct initial evaluation of counter-evidence that we
could directly use in an extended version of the system. Therefore, whenever the
data-to-symbol conversion issues the value 𝑐 to a particular entity, we associate with
that entity the pair of evidence and counter-evidence (𝑐, 1 − 𝑐).
From now on, each basic entity of the system will be represented as a 𝛼 (𝑠, 𝑡),

where 𝛼 is an atomic formula and (𝑠, 𝑡) an element of the product bilattice, where
the value 𝑠 stands for reasons for 𝛼, and the value 𝑡 for reasons against 𝛼. Recall that
compound rules of CADIAG-II deal with complex logical formulas. Therefore, after
an initial evaluation of the entities, i.e., an association of a pair of values to them,
compound formulas will be obtained as follows:

For any 𝛼, 𝛽 basic entities in CADIAG-II, and (𝑠, 𝑡), (𝑢, 𝑣) ∈ 𝐵(𝐿)

(∧)
𝛼 (𝑠, 𝑡) 𝛽 (𝑢, 𝑣)

(𝛼 ∧𝑘 𝛽) (𝑠 ∧ 𝑢, 𝑡 ∨ 𝑣))

(¬)
𝛼 (𝑠, 𝑡)

¬𝛼 ¬(𝑠, 𝑡) = (𝑡, 𝑠)

Let us now focus on the IF-THEN rules of the system. We will focus on their role
in transmitting knowledge (in the sense of bilattices) rather than merely truth. We
will represent each such rule in the format

IF 𝛼 THEN 𝛽 (𝑥, 𝑦)

where𝛼 and 𝛽 are compound formulas, denoting symptoms and disease, respectively,
and (𝑥, 𝑦) is a pair of values in the product bilattice.
Given a compound formula𝛼 evaluatedwith the pair (𝑢, 𝑣) in the bilattice product,

and an IF-THEN rule as the one above, we will then compute the value of the
conclusion 𝛽 simply as follows:

(k)
IF 𝛼 THEN 𝛽 (𝑠, 𝑡) 𝛼 (𝑢, 𝑣)

𝛽 (𝑠, 𝑡) ∧𝑘 (𝑢, 𝑣)
The form of the rule might suggest a sort of ‘knowledge modus ponens’, where

the value associated with the antecedent and the one associated with the rule are
combined in order to obtain the value of the consequent, bymeans of the operation∧𝑘 .
However, it should be noted that the pair of values attached to IF 𝛼 THEN 𝛽 should
not be regarded as ‘reasons for’ and ‘reasons against’ an implication 𝛼 → 𝛽, but
rather as a measure of how much, from the values of evidence and counter-evidence
of the antecedent, we can infer evidence and counter-evidence of the consequent,
respectively. The crucial issue is then to associate such pairs of values with each of
the IF-THEN rules, since such values are not immediately provided from the dataset.
Depending on the type of rules, we proceed as follows:
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• We represent rules of type 𝑐𝑑 and 𝑎𝑜, as:

IF 𝛼 THEN 𝛽 (SOC,FOO).

Note that rules of type 𝑎𝑜, i.e., those rules where the full exclusion of the premise
implies the full exclusion of the conclusion, are just a particular case of rules of
type 𝑐𝑑 with FOO = 1.

• We generalize rules of type 𝑚𝑒 as

IF 𝛼 THEN ¬𝛽 (1 − SOC, 1 − FOO).

Note that the mutually exclusive rule of CADIAG-II is a particular case of the 𝑚𝑒

rule above, with SOC = 0 and FOO = 0. For each of the above rules 𝑐𝑑 , 𝑎𝑜, and
𝑚𝑒, we may use (k) to combine the pair associated with the premises and the one
associated with the IF-THEN rule in order to obtain the relevant pair associated with
the conclusion.
The use of FOO in the 𝑐𝑑 rules is a new feature in our proposal. It expands the

inferential power of our system with respect to CADIAG-II: values of FOO different
from 1were indeed present in rules of type 𝑐𝑑 of CADIAG-II, but were not previously
used at all. The use of FOO is justified by the following consideration: (1) FOO is
a generalization of the conditional probability of the premise of the rule, given the
conclusion; (2) such a value is directly proportional to the conditional probability of
the negation of the conclusion, given the negation of the premises; (3) the latter is a
measure of howmuch the exclusion of the premises allows inference of the exclusion
of the conclusion. Note that, as a limit case, the rules of type (𝑎𝑜), i.e., those rules
where the full exclusion of the premise implies the full exclusion of the conclusion,
are actually those with FOO = 1.
Finally, the use of the pair (1 − SOC, 1 − FOO) rather than (SOC,FOO) for the

rules of type 𝑚𝑒, is justified by the fact that we are using ¬𝛽 rather than 𝛽 as the
conclusion of the rule.
So far, we have presented a different way of dealing with rules and inferences for

CADIAG-II. Since the bilattice operation ∧𝑘 is used for combining the premise in
the rule (𝑘), the focus of the inference process will no longer be on truth, but on
knowledge order, aiming to maximize the latter. In this spirit, it appears reasonable
to require that, for any entity 𝛽, all pairs of values produced for 𝛽 by the system via
applications of (𝑘) are then combined through ∨𝑘 .

Remark 1 All logical operations, including negation are monotone with respect to
knowledge order, so that a fixpoint can be found for each entity.

Remark 2 The generalization of the rules of type 𝑚𝑒 will only have an effect if
negative rules are incorporated into knowledge bases.

Let us recall that, in CADIAG-II, the value 0 (for falsity) was treated in a different
way than other values, because it was given preference over higher non-zero results,
while the highest value was always chosen for all remaining truth values. This shows
that a knowledge order was already implicitly involved there. The value 0, which
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stands for ‘totally false’, was indeed taken to provide more knowledge than other
intermediary values, namely the full exclusion of a given entity. This is treated in a
more elegant and coherent way in our approach.

4 Implementation and Experimental Results

CADIAG-II was originally developed and run on an IBM host computer system [18]
(at the Department of Medical Computer Sciences, University of Vienna Medical
School) which is no longer in operation. In order to evaluate the described improve-
ments, both CADIAG-II and bCADIAG-II were implemented within the PC-based
medical expert system shell MedFrame [24], and comparatively tested against a set
of patients with clinically confirmed discharge diagnoses.

4.1 MedFrame, CADIAG-II, and bCADIAG-II

MedFrame [24] is an expert system shell designed especially for implementing
medical expert systems using fuzzy concepts. It provides the medical knowledge
engineer with

• various knowledge representation formalisms to store medical knowledge and
reflect adequate inference mechanisms,

• concepts for modeling and handling uncertainty in medical terminology and
medical relations, with special emphasis on fuzzy methodologies,

• mechanisms for storing patient data and history in a standardized manner,
• concepts for representing medical knowledge in a standardized way, and
• utilities for implementing inference mechanisms easily and rapidly.

The rheumatological knowledge base of the original CADIAG-II [5] which cur-
rently contains 1,126 symptoms and 170 documented diagnoses was imported into
MedFrame’s knowledge database, resulting in 658 fuzzy sets and 2,143 rules for
data-to-symbol conversion, as well as 21,470 IF-THEN rules for inference (982
symptom-symptom, 368 disease-disease, 61 symptom-combination-disease, and
20,041 symptom-disease relationships). MedFrame’s utilities for developing infer-
ence mechanisms were used to re-implement CADIAG-II based upon the original
IBM host implementation. In combination, the transferred knowledge base as well
as the newly implemented inference mechanisms entirely comply with all the ap-
proaches described in Sect. 2.
In addition, the modified inference process of bCADIAG-II described in Sect. 3.2

was implemented. The operators were rendered capable of dealing with unknown en-
tities analogous to CADIAG-II. Therefore, bCADIAG-II incorporates the following
improvements:
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• Inclusion of negative evidence. In addition to the strength of evidence, for every
medical concept the strength of counter-evidence is also maintained in form of a
product bilattice.

• Advanced handling of FOO. In addition to (me) rules, FOO and ∧𝑘 are also used
in the evaluation of (c𝑑) rules.

• Application of ∨𝑘 for calculating the overall evidence of a medical concept.

4.2 Evaluation and Results

For evaluating the performance of bCADIAG-II compared to that of CADIAG-II,
the data of 3,131 anonymized hospitalized rheumatic patients were imported into
MedFrame’s patient database, including extended clinical data from the patients’
histories, physical examinations, laboratory tests, and clinical investigations. Fur-
thermore, all the 8,445 clinically confirmed discharge diagnoses of these patients
were also transferred to MedFrame and used as a diagnostic gold standard. The
number of discharge diagnoses in the set of available patient data ranged from 0–9
(mean 2.59, median 2).
The 3,131 patients were then analyzed by both implementations, CADIAG-II and

bCADIAG-II, applying the same knowledge base. This was done in batch mode.
Since the patient data cases only contained clinically confirmed existing diseases
and no information about definitely absent diseases, the evaluation was focused on
opposing the discharge diagnoses to confirmed diagnoses and diagnostic hypothe-
ses. In this context, confirmed is equivalent to a strength of evidence of 1.0, and
hypothetical is equivalent to a strength of evidence between 0.4 and 0.99. Moreover,
for bCADIAG-II the strength of counter-evidence of a concept was required to be
less than 0.4 in order to be considered hypothetical.
The interpretation for each patient was assigned to one of six classes, as shown

in Table 1. The results of the evaluation are listed in Table 2.

4.3 Discussion of Results

The original CADIAG-II/RHEUMA implementation was evaluated several times fo-
cusing on confirmation of the correctness and soundness of the generated diagnostic
results in retrospective and prospective studies [23,28]. In contrast, the evaluation at
hand did not check the results for correctness, but concentrated solely on the impact
of the undertaken change of the underlying inference process on the outcome.
Table 2 clearly shows that bCADIAG-II performs just as well as CADIAG-II.

The inferred results are identical, except for differences in the number of generated
excluded diagnoses.
Since neither of the modifications has an impact on the calculation of positive

evidences, it is no wonder that the inference results are identical with respect to
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Table 1 Classification of interpretations

Class Categorization
Full Hit All discharge diagnoses were contained in the diagnostic results as con-

firmed or hypothetical
75–99% Between 75% and 99% of all discharge diagnoses were contained in the

diagnostic results as confirmed or hypothetical
50–74% Between 50% and 74% of all discharge diagnoses were contained in the

diagnostic results as confirmed or hypothetical
25–49% Between 25% and 49% of all discharge diagnoses were contained in the

diagnostic results as confirmed or hypothetical
1–24% Between 1% and 24% of all discharge diagnoses were contained in the

diagnostic results as confirmed or hypothetical
No Hit None of the discharge diagnoses were contained in the diagnostic results

as confirmed or hypothetical

Table 2 Interpretation results

Class CADIAG-II bCADIAG-II
Full Hit 937/29.89% 937/29.89%
75–99% 209/6.68% 209/6.68%
50–74% 1,217/38.87% 1,217/38.87%
25–49% 367/11.72% 367/11.72%
1–24% 15/0.48% 15/0.48%
No Hit 387/12.36% 387/12.36%
Number of confirmed diagnoses 569 569
Number of diagnostic hypotheses 20,777 20,779
Number of excluded diagnoses 50,789 50,765
Mean/median/maximum of confirmed di-
agnoses

0.17/0/3 0.17/0/3

Mean/median/maximum of diagnostic hy-
potheses

6.37/6/22 6.37/6/22

Mean/median/maximum of excluded diag-
noses

15.57/16/36 15.57/16/36

confirmed and hypothetical diagnoses. Apart from the 50,765 excluded diagnoses,
bCADIAG-II additionally infers 703 hypothetical absent diagnoses, i.e., diagnoses
with a strength of evidence less than 0.4 and a strength of counter-evidence more
than 0.4. Twenty-four of these cases are the reason for the difference in the num-
ber of excluded diagnoses (50,789 in CADIAG-II and 50,765 in bCADIAG-II). In
bCADIAG-II, the ‘knowledge modus ponens’ assigns strength of evidence to these
concepts, which is an improvement of the inference process. Apart from these 24
cases, an additional 679 hypothetical absent diagnoses for 258 patients are provided
by bCADIAG-II.
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These numbers demonstrate the high potential of using negative evidence, espe-
cially in the process of differential diagnosis. A computer-based differential diag-
nostic system, accordingly equipped, would provide the physician with information
about diseases which are most likely not present, and thus direct the physician’s
attention to other diseases. Yet, since the CADIAG-II/RHEUMA knowledge base
does not utilize these concepts (except for full exclusion) and the improvements in
the results are only due to advancements in the inference process, there is a clear
need to re-design the respective knowledge base. It should include the use of the
concept of negative evidence.
Apart from comparative results, the evaluation confirms the results of previous

studies. bCADIAG-II was able to infer at least one of the available discharge diag-
noses for 88%of the reference patients, andmore than 75%of all discharge diagnoses
for more than 36% of them. While the given evaluation employed a threshold of 0.4
for diagnostic hypotheses, it was set to 0.2 in [28]. An evaluation of 3,131 reference
patients with bCADIAG-II and a threshold of 0.2 resulted in the detection of at least
one of the available discharge diagnoses for 95.5% of the reference patients, and
more than 75% of all discharge diagnoses for more than 68% of patients.

5 Conclusions

After some further steps in the formalization of the CADIAG-II inference process
[12], bCADIAG-II should be another measure towards putting CADIAG-II onto
an extended solid formal basis. By applying the concept of product bilattices, the
prerequisites for including negative evidence (i.e., rules diminishing the certainty of a
particular diagnosis) into the CADIAG-II system was established. The experimental
results proved the identical behavior of CADIAG-II and bCADIAG-II and confirmed
the quality of inference results in comparison with former evaluations. In addition,
bCADIAG-II increased the quantity of generated results in the form of indications
to absent diseases other than those excluded with the existing knowledge base.
Nevertheless, the evaluation clearly showed that significant improvements can only
be achieved by re-creating the knowledge base and make extensive use of negative
rules and counter-evidence other than total exclusion.
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