
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

A detailed analysis of the Arden Syntax expression grammar

Stefan Krausa,⁎, Marc Rosenbauera, Lutz Schröderb, Thomas Bürklec, Klaus-Peter Adlassnigd,e,
Dennis Toddenrotha

a Department of Medical Informatics, Biometrics and Epidemiology, Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Wetterkreuz 13,
91058 Erlangen, Germany
bDepartment of Computer Science, Chair of Theoretical Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 3, 91058 Erlangen,
Germany
c Bern University of Applied Sciences, Institute for Medical Informatics, Höheweg 80, CH-2502 Biel, Switzerland
d Section for Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, A-
1090 Vienna, Austria
eMedexter Healthcare GmbH, Borschkegasse 7/5, A-1090 Vienna, Austria

A R T I C L E I N F O

Keywords:
Arden Syntax
Medical Logic Modules
Domain-specific language

A B S T R A C T

Objective: The Arden Syntax for Medical Logic Systems is a standard for encoding and sharing medical knowl-
edge in the form of Medical Logic Modules. To improve accessibility for clinicians, the originators of the standard
deliberately designed Arden Syntax expressions to resemble natural language, and parentheses around operands
are not generally required. For certain patterns of nested expressions, however, the use of parentheses is
mandatory, otherwise they are not accepted by an Arden Syntax environment. In this study, we refer to such
patterns as anomalies. The purpose of this paper is to investigate the extent and the circumstances of such
anomalies, and to outline a solution based on an alternative grammar encoding approach.
Methods: To analyze the distribution of anomalies in nested expressions, we developed two custom-made
complementary utilities. The first utility, termed parser, checks a single expression pattern against the specifi-
cation-compliant grammar for syntactic correctness. The second utility, termed composer, automatically creates
an extensive amount of expression patterns by permuting and nesting operators without the use of parentheses,
and stores these together with the expected syntactic correctness. By means of these utilities we conducted a
comprehensive analysis of anomalies by comparing the expected correctness with the actual correctness. Any
detected anomalies are stored into a set of files, grouped by the respective top-level operator, for a subsequent
analysis.
Results: The composer utility nested 165 unary, binary, or ternary operators of Arden Syntax version 2.8 to a
depth of two, resulting in a set of 76,533 expression patterns, of which 18,978 (24.8%) have been identified as
anomalies. An automated assessment of their practical relevance for medical knowledge encoding is infeasible.
Manual screening of selected samples indicated that only a small proportion of the detected anomalies would be
relevant. The cause of the anomalies lies in the encoding of the grammar. A change of the basic encoding
approach with some additional customizations eliminates the anomalies. A working expression parser is in-
cluded in the supplementary material.
Conclusion: Arden Syntax expressions are affected by anomalies. Since only a small proportion of them have
practical relevance and they cannot cause false calculations or clinical decisions, their practical impact is likely
limited. However, they may be potential points of confusion for knowledge engineers. An alternative expression
grammar, based on a different encoding approach, would not only eliminate the anomalies, but could con-
siderably facilitate both maintenance and further development of the standard.

1. Introduction

The Arden Syntax for Medical Logic Systems is a standard for en-
coding and sharing medical knowledge in the form of Medical Logic

Modules (MLMs) [1], maintained by the Health Level 7 (HL7) organi-
zation. A single MLM typically contains sufficient knowledge to support
a specific clinical decision, such as whether a hypoglycemic patient
requires therapy in a particular situation. The Arden Syntax is a highly

https://doi.org/10.1016/j.jbi.2018.05.008
Received 21 January 2018; Received in revised form 11 May 2018; Accepted 13 May 2018

⁎ Corresponding author.
E-mail address: stefan.kraus@uk-erlangen.de (S. Kraus).

Journal of Biomedical Informatics 83 (2018) 196–203

Available online 27 June 2018
1532-0464/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2018.05.008
https://doi.org/10.1016/j.jbi.2018.05.008
mailto:stefan.kraus@uk-erlangen.de
https://doi.org/10.1016/j.jbi.2018.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2018.05.008&domain=pdf

specialized language, tailored to the requirements of data-driven clin-
ical event monitoring [2]. During its use in clinical routine at the
University Hospital Erlangen, Germany [3], we repeatedly observed
that this standard is useful not only for event monitoring functions, but
for many other programming tasks, such as user-driven information
retrieval at the bedside. Our experiences were so promising that the
Arden Syntax appeared as a suitable starting point for a domain-specific
language (DSL) for medical informatics in general. However, we also
detected some minor issues in the Arden Syntax specification that may
require revision, especially with regard to the potential use of MLMs
beyond their originally intended scope of application. This study is part
of a research project to generalize the Arden Syntax to an easy-to-use
DSL for various clinical applications [4]. The prototype of this DSL has
been termed PLAIN (Programming Language, Arden-INspired) to point
out its origin. In contrast to the highly specialized Arden Syntax, PLAIN
is intended to be generic within the medical informatics domain. This
disparate nature of both languages requires multiple adjustments to the
language constructs, the data type system, and the interactions with the
surrounding clinical environment. This study concentrates on the en-
coding of operators and expressions, the most cumbersome part of both
languages.

The main motivation for this investigation of the Arden Syntax
grammar was to systematically delineate the circumstances of several
cases, reported by Arden Syntax users, where specific expressions re-
sulted in unexpected syntax error messages. An example has been
communicated by a participant of the HL7 Arden Syntax working group
in the mailing list in October 2015. It refers to the first argument of the
SUBLIST operator (see specification [5], section 9.14.6).

Expression (1A) extracts the first two elements from a list of laboratory
results. Expression (1B) is intended to likewise extract the last two
elements from a list (the minus sign indicates extraction from the end of
a list), but standard-compliant compilers fail to parse a negative first
argument here, and instead report a syntax error. The Arden Syntax also
provides a SUBSTRING operator ([5], 9.8.10), which extracts a sub-part
from a specific string. While both the SUBLIST and the SUBSTRING
operator functionally support a negative first operand, only in case of
SUBLIST will its invocation produce a syntax error, unless the first
operand is parenthesized. Thus, counterintuitively, expression (1B) is
not processed, in contrast to expression (1D).

Earlier research on the mapping of complex patient data [6] highlighted
another example related to the ATTRIBUTE FROM operator ([5],
9.18.4). In both expressions (1E) and (1F), the second operands (un-
derlined for accentuation) were expected to be valid. While in example
(1E) the underlined expression is a valid operand, the very same ex-
pression results in a syntax error in case of (1F).

(1G) SORT ROUND values → OK
(1H) ROUND SORT values → SYNTAX ERROR
(1I) ROUND LAST values → OK

Another significant example refers to sorting and rounding of lists with
numeric values, such as a list of calculated clinical score values.
Example (1G) rounds the values first, and then sorts them. Example
(1H) should sort the values first, and then round them, but results in a
syntax error. Example (1I) is similar to (1H), except that SORT has been
replaced with LAST, but is accepted by a compiler.

Such cases of counterintuitive syntax errors, which we will further

refer to as anomalies, may be considered a minor problem insofar as
they can be solved in a simple way. In example (1B), the workaround
would be to parenthesize the first operand “-2” of the SUBLIST op-
erator. The solution for example (1F) would be to parenthesize the
second operand “FIRST findings” of the ATTRIBUTE FROM operator.
The solution for example (1H) would be to parenthesize “SORT va-
lues”. Moreover, such anomalies appear to be infrequent and cannot
lead to false decisions, because they are reported at compile time and
thus not processed at all. However, they may impede the knowledge
engineering process, insofar as MLM authors may be faced with in-
comprehensible compile errors; this may result in a decreasing readi-
ness to write MLMs. In the above examples, the error messages will
likely be inexplicable for most Arden Syntax users. Moreover, in case of
such an unexpected syntax error, a user can hardly determine which of
the operands needs to be parenthesized, or may not even be aware of
such a solution. The purpose of this study is to perform a detailed
analysis of the Arden Syntax grammar in order to determine the extent
of anomalies in Arden Syntax expressions, and the reasons for their
occurrence. In addition, we discuss an alternative encoding approach
that fixes this issue and might also considerably simplify the main-
tenance of the standard.

2. Background

2.1. Medical Logic Modules

An MLM corresponds to a production rule (CONDITION-ACTION)
insofar as it typically evaluates a predefined condition in conjunction

with patient-specific input data, and then possibly performs an action.
Such a condition might be the occurrence of a low glucose value; the
corresponding action might be to dispatch an alert message to a phy-
sician. The decision logic of an MLM is not limited to basic operations
such as comparisons of individual patient attributes, but can be a pro-
cedural program of arbitrary complexity. MLMs have a frame-like
structure, consisting of sections termed categories, which are them-
selves subdivided into multiple slots. Four specific slots within the
KNOWLEDGE category (“structured slots”) contain programming lan-
guage constructs that resemble those used in common all-purpose
programming languages. For an introduction into writing MLMs see

Hripscak [7].
To convert MLMs into an executable format, Arden Syntax compi-

lers described in the literature usually either transform code into in-
termediate all-purpose programming languages such as Java [8–10] or
C++ [11], or into specific virtual machine code [12]. The construction
of such a compiler by means of a parser generator presupposes a
computable language description in the form of a grammar, usually
provided in Backus-Naur form. The Arden Syntax specification provides
such a grammar for common LALR(1) parsers. This abbreviation stands
for “look ahead, left to right, rightmost derivation”, with a single token
look ahead, whereby a token is a meaningful chunk of input, such as a
keyword, a variable name, or an arithmetic operator. Based on a
grammar, a compiler can decide whether Arden Syntax code is syn-
tactically correct or not. For an introduction on this matter see for ex-
ample [13] or [14].

(1A) SUBLIST 2 ELEMENTS FROM crp → OK
(1B) SUBLIST -2 ELEMENTS FROM crp → SYNTAX ERROR
(1C) SUBSTRING 2 CHARACTERS FROM germcode → OK
(1D) SUBSTRING -2 CHARACTERS FROM germcode → OK

(1E) SUBSTRING 2 CHARACTERS FROM FIRST matcodes → OK
(1F) ATTRIBUTE “material” FROM FIRST findings → SYNTAX ERROR

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

197

2.2. Statements and expressions

A structured slot of an MLM, such as the LOGIC slot for the actual
clinical decision, contains statements, such as variable assignments,
conditional branching, and loops. These statements process expressions
composed of operators tailored to the requirements of clinical decision
support functions.

(1J) WRITE glucose WHERE IT OCCURRED WITHIN THE PAST
24 HOURS;

(1K) WRITE ((glucose) WHERE ((IT) OCCURRED WITHIN THE
PAST (24 HOURS)));

(1L) WRITE (WHERE (glucose, OCCURRED_WITHIN_PAST
(glucose, HOURS (24))));

Example (1J) shows a valid Arden Syntax WRITE statement ([5],
12.2.1). It outputs the glucose readings of a patient that have been
documented within the past 24 h to the standard destination of the
specific environment. The keyword WRITE must be followed by an
expression and a semicolon. An expression is a combination of opera-
tors and their operands, which may be constants, variables, or sub-ex-
pressions. The nested expression in example (1J) (underlined for ac-
centuation) is composed of a WHERE operator ([5], 9.3.1), an
OCCURRED WITHIN PAST operator ([5], 9.7.7), and an HOUR ([5],
9.11.5) operator. This example also contains the variable glucose, the
keyword IT (which, in this example, refers to the value of glucose), and
the numeric constant 24. Expressions are evaluated at runtime by an
Arden Syntax environment and result in a value. The underlined ex-
pression in example (1J) results in a list of numeric values. A so-called
atom constitutes a special case of an expression that is not built from
sub-expressions, and thus cannot be decomposed to sub-expressions.
Examples for atoms include the variable name glucose and the numeric
literal 24. The expression “24 HOURS”, in contrast, is not an atom, since
it is formed by the unary HOUR operator and the numeric operand 24.
To determine the evaluation order of a nested expression at runtime,
any operator of the Arden Syntax is associated with a precedence level,
described in annex A4 of the specification.

As in most common all-purpose programming languages, Arden
Syntax operators may be left-associative, right-associative, or non-as-
sociative. In the latter case, consecutive operator use is treated by the
compiler as a syntax error (this is an intended behavior and has no
relation to anomalies, see [5], 9.1.7.3). For example, the expression
“x < y < z” is invalid, because the operator “ < ” is non-associative.
The same applies to e.g. “x < = y < z”, because all Arden Syntax
comparison operators, including the IS ([5], 9.6) and OCCUR ([5], 9.7)
comparison operators, are non-associative and share the same pre-
cedence level.

The error handling of the Arden Syntax with respect to the eva-
luation of expressions at runtime is tailored to the requirements of data-
driven event monitoring. MLM execution continues in case of a situa-
tion that would create an exception or error message in common all-
purpose languages, and the expression evaluates to a NULL value in-
stead. This handling is reasonable for the medical domain, and PLAIN
adopted it. For example, the expressions “2 + true” (adding a number
and a Boolean value) and “1 / 0” (division by zero) are accepted by an
Arden Syntax compiler, but are evaluated to NULL at runtime.
Consequently, it may occur that a nested expression always returns
NULL. To give an example, the expression “UPPERCASE SINE < arg > ”
returns NULL for any elementary argument; SINE returns NULL in case
the argument is not a number; UPPERCASE returns NULL in case the
argument is not a string.

2.3. Use of parentheses

The designers of the Arden Syntax intended to build on a pro-
nounced resemblance to natural language so “that clinicians will be able
to read and understand Arden Syntax knowledge bases with little training”

[1]. Thus, keywords may have an operator-individual arrangement, and
parentheses around operands are not generally required. This enables
easy-to-understand expressions such as in example (1I), which resemble
natural language more closely than alternative definitions predicated
on nested parentheses. For comparison, example (1K) outlines how
Example (1J) would look like if parentheses were mandatory. Example
(1L) illustrates what expressions would look like in a conventional
approach with a function-like operator syntax.

The specification is slightly vague regarding the use of parentheses,
insofar as it merely states that “Parentheses are not required” in case of
aggregation operators, and that “Multiple aggregation and transformation
operators may be placed in an expression without parentheses” ([5],
9.12.1). The specification provides, however, several examples based
on other operator types where expressions are nested without the use of
parentheses. The only case in which parentheses are explicitly required
refers to consecutive arithmetic operators. For example, the expression
“3 + -4” must be transformed to “3 + (-4)” ([5], 9.9.4).

(1M) MAXIMUM OF crea_lab, crea_bga
(1N) MAXIMUM OF (crea_lab, crea_bga)

Although valid syntax does not generally require parentheses around
operands, they can be used in order “to force a different order of ex-
ecution” ([5], 9.1.8). For example, if a maximum creatinine value is
required from two complementary data sources, such as a central la-
boratory and a blood gas analyzer, expression (1M) would be in-
appropriate, because the MAXIMUM operator ([5], 9.12.10) has a
higher precedence than the COMMA operator ([5], 9.2.1), which joins
both lists of creatinine values. The intended behavior of joining both
lists first, then extracting the maximum value, can be enforced via
parentheses as shown in expression (1N). This illustrates that an Arden
Syntax knowledge engineer must be aware of operator precedence.

3. Methods

Our study started with a detailed investigation of the grammar
provided in annex A1 of the specification, to investigate its encoding
approach and internal structure. We focused on the expression level and
analyzed the hierarchy of precedence levels and corresponding sym-
bols. We used version 2.8 of the Arden Syntax [5], because the PLAIN
prototype does not include fuzzy logic constructs introduced in the
subsequent version 2.9 [15–17]. However, the parts of the grammar
related to the subject of this investigation remained the same in sub-
sequent versions. To examine the extent of and the reasons for the
unexpected syntax errors, we laid down a definition of the effect we
refer to. As described above, some specific patterns of nested expres-
sions result in a syntax error unless certain operands are parenthesized.
We refer to such cases as anomalies.

Definition. An anomaly is a specific expression pattern that results in a
syntax error and fulfills the following conditions: the operands are not
parenthesized, there is no consecutive use of non-associative operators,
and there is no consecutive use of arithmetic operators.

(2A) SUBLIST - < expr > ELEMENTS FROM < expr >
(2B) ATTRIBUTE < expr > FROM FIRST < expr >
(2C) ROUND SORT < expr >

An anomaly can be seen as an expression pattern that results in a
counterintuitive syntax error. It is a pattern insofar as an anomaly does
not depend on the specific value of an operand. In example (1B) any
first operand of SUBLIST that starts with a minus sign would result in a
syntax error, such as “-2”, “-3”, or “-(log x + sine y)”. In this
specific example, the first operand can be abstracted to “- < expr > ”.
Note that the minus sign is, just like in most programming languages, a
separate operator ([5], 9.9.3). Consequently, any expression that un-
derlies the pattern in example (2A) is an anomaly. Analogously, ex-
ample (1F) can be abstracted to the anomaly (2B), and example (1H)

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

198

can be abstracted to the anomaly (2C). Anomalies always result in
syntax errors, for any valid sub-expression < expr > .

Based on this definition, we created two complementary utilities to
analyze the distribution of anomalies in an extensive set of nested
Arden Syntax expressions. The first utility, called the parser, determines
the actual syntactic correctness of an expression pattern. It was im-
plemented by means of an open source parser generator, using the
Arden Syntax grammar from the specification. This required some
minor adjustments to the input format of the grammar, albeit without
any alteration of its inherent tree structure. We restricted parsing to the
expression level of the grammar and designed the utility to process only
one single expression at a time, returning “OK” for syntactic correct-
ness, “ERROR” in case of a syntax error, and “UNKNOWN TOKEN” in
case of undefined lexical inputs. On the syntactic level of the Arden
Syntax all atomic expressions are equivalent, thus we abstracted from
variable names, specific literals such as numbers or string constants,
and their specific data types. Consequently, a specific expression such
as “glucose IS LESS THAN 50” can be abstracted to “ < atom > IS
LESS THAN < atom > ”. For automatic testing, we pragmatically used
the single character token “a” as a replacement for atoms. To simplify
interactive expression testing via the parser utility for human users, we
introduced four additional tokens: “num” for any numeric literal, “str”
for any string literal, “var” for any variable name, and “atom” for any
atomic expression, including numbers, strings, and variable names. We
integrated a minimalist tokenizer, which expects all tokens (case in-
sensitive) to be separated by blanks. In this approach, example (1B) can
be checked for syntactic correctness via the following invocations of the
parsing tool (both invocations are equivalent; the second one is the
user-friendly version):

PARSE “SUBLIST - a ELEMENTS FROM a”
PARSE “SUBLIST - num ELEMENTS FROM var”

The second utility, called the composer, creates an extensive set of
nested Arden Syntax expression patterns, together with the expected
syntactic correctness. This utility can be compared to an MLM author
who is familiar with non-associativity but who is unaware of the
anomalies. The composer permutes operators and hierarchically nests
them, without parenthesizing any argument. To give an example, pro-
cessing the logical OR operator ([5], 9.4.1) on the top-level and the
logical NOT operator ([5], 9.4.3) on the sub-level creates the following
patterns:

NOT a OR a
a OR NOT a
NOT a OR NOT a

We specified a straightforward input file format providing a syntax
description of the 165 operators in version 2.8, together with their
specific precedence level and associativity, separated by a semicolon.
For example, the entry

21; SUBLIST %s ELEMENTS{ STARTING AT %s} FROM %s;
RIGHT;

refers to the SUBLIST operator, which features an optional STARTING
AT infix to specify a start position, as indicated by the curly braces part.
The number 21 denotes the precedence level, the token “%s” is a pla-
ceholder for sub-level expressions, the term RIGHT marks this operator
as right-associative. If a non-associative operator is nested within itself,
or if different non-associative comparison operators that share the same
precedence level are nested, the composer determines that a syntax
error is expected from the parser. To do this correctly, the composer
must consider operator precedence, since the consecutive use of op-
erators in nested expressions depends on the order of evaluation. This
can be illustrated by example (2D), which shows an expression com-
posed of PLUS and WHERE. The precedence of PLUS is higher than that
of WHERE, so the evaluation order of this expression is as shown in
example (2E), constituting a case of consecutive use of the WHERE

operator. Because WHERE is non-associative, the composer assigns an
expected syntax error. Example (2F) shows an expression similar to
(2D), but with a COMMA operator instead of PLUS. COMMA has a
lower precedence than WHERE, so the evaluation order is as shown in
(2G), not constituting a case of consecutive use of WHERE. Thus, a
syntax error is not expected. When defining the expected correctness,
the composer also accounts for the special case of consecutive ar-
ithmetic operators as described above. In all other cases, the composer
assigns that an error is not expected.

(2D) a WHERE a + a WHERE a
(2E) a WHERE (a + a) WHERE a → SYNTAX ERROR EXPECTED
(2F) a WHERE a, a WHERE a
(2G) (a WHERE a), (a WHERE

a)
→ SYNTAX ERROR NOT
EXPECTED

Based on both utilities, we performed an extensive analysis by auto-
matically processing the complete set of expression patterns with a
depth of two for the Arden Syntax versions 1, 2, 2.8, and the PLAIN
prototype. For each pattern, we automatically compared the actual
correctness, determined by the parser, to the expected correctness, as-
signed by the composer. We stored any detected anomalies into a set of
text files, grouped by the specific operator on the top level of an ex-
pression pattern.

4. Results

The Arden Syntax grammar, provided in annex A1 of the specifi-
cation in Backus-Naur form, comprises four distinct levels that corre-
spond to the structure of MLMs.

• Frame-like structure: The uppermost level addresses the frame-like
MLM structure consisting of categories and slots.

• Statements: The next lower level describes the programming lan-
guage statements within the structured slots EVOKE, DATA, LOGIC,
and ACTION. Each of them contains a block of statements, whereas
some statements are only allowed within specific slots. A READ
statement, to access data items from the patient record, is only al-
lowed within the DATA SLOT; a WRITE statement, to send an alert
to a clinical user, is only allowed within the ACTION slot. Thus, the
statement level has four different start symbols (< evoke_-
block > , < data_block > , < logic_block > , < action_-
block >).

• Expressions: In contrast to the statement level, the expression level
of the Arden Syntax is uniform for all slots and statements (the
EVOKE slot, however, does not refer to this level). Operator asso-
ciativity and precedence are encoded using 54 distinct nonterminal
symbols and 23 precedence levels.

• Lexical constructs: The lowest level addresses the lexical con-
structs, such as the requirements for a valid variable name.

Table 1 shows the results of the analysis performed by means of the
two complementary utilities. For Arden Syntax version 2.8, permuting
and nesting 165 operators resulted in 76,533 expression patterns.
18,978 (24.8%) were identified as anomalies. The percentage of
anomalies has been growing across the examined Arden Syntax ver-
sions, from 6.4% in Version 1 to 24.8% in version 2.8. PLAIN was

Table 1
Results from the analysis of anomalies.

Arden Syntax Version 1 2 2.8 PLAIN

Operators 100 132 165 156
Expression patterns 22,657 36,783 76,533 54,021
Anomalies 1445 4581 18,978 0
Percentage of anomalies 6.4 12.5 24.8 0
Grammar conflicts 0 0 114 0

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

199

shown to be free from anomalies. The distribution of the recorded
anomalies across the 165 operators was very heterogeneous. The
minimum was the unary COMMA ([5], 9.2.2) with three anomalies. The
maximum was the SUBLIST operator with 1664 anomalies (8.8% of all
detected anomalies). 11,785 anomalies (62.1%) were related to op-
erators that make use of the keywords FROM and/or USING.

The vast majority of the detected anomalies have no practical re-
levance insofar as they are never used in actual knowledge encoding
(see discussion). The proportion of those anomalies that have practical
relevance cannot be calculated automatically, because this would pre-
suppose an automatic decision whether an expression pattern is re-
levant or not, which is not possible. A very rough estimate can be
provided based on a manual screening of some samples from the files
created by the composer. For example, the ATTRIBUTE FROM operator,
used in Example (3B), is affected by 411 anomalies, but only 14 have
potential practical relevance. Multiple other samples did not contain
any relevant patterns at all. We assume that the proportion of anomalies
with any practical relevance is in the lower double-digit range, con-
siderably below one percent of the 18,978 recorded anomalies.

A manual analysis of the grammar rules related to a selection of
anomalies revealed their reason. Operator precedence and associativity
are implicitly encoded by means of separate nonterminal symbols for
each precedence level. Examples of such nonterminal symbols are
< expr_or > (precendece level 7), < expr_and > (level 8), and
< expr_not > (level 9) for the logical operators ([5], 9.4). An anomaly
is created whenever the precedence level of an actual operand is lower
than that of the corresponding nonterminal symbol in the grammar. To
refer to the initial examples (1G) and (1H): The SORT operator and its
operand (< expr_sort >) refer to level 2. The ROUND operator and
its operand refer to level 21. Thus, in case of example (1H), the op-
erand, formed by the sub-expression “SORT < expr > ” refers to a lower
level than the ROUND operator. This results in a syntax error, unless
“SORT < expr > ” is parenthesized. The precedence level of a specific
nonterminal symbol is not always obvious and may require a deeper
understanding of the grammar.

The explanation of example (1B) is that the first operand of SUBLIST
refers to < expr_factor > (level 22), while the operand “-2” as a
case of unary minus refers to < expr_plus > (level 13). Fig. 1 shows
another illustrative example in the form of a grammar rule for trans-
formation operators, such as FIRST FROM (see 9.14.4 of the specifica-
tion), and three example expressions (A), (B), and (C). The first operand
of the FIRST FROM operator refers to < expr_factor > (level 22). In
(A), the first operand “n” is an atom, referring to the highest precedence
level < expr_factor_atom > (level 23). Thus, parentheses are not
required. In (B), the first operand is the expression “n + 1”. The binary
“+” operator ([5], 9.9.1) refers to < expr_plus > (level 13), which
has a lower precedence than < expr_factor > . Thus, a syntax error is
reported, unless the operand is parenthesized as shown in (C).

Parenthesized expressions are on the highest possible precedence
level < expr_factor_atom > . This explains why parenthesizing a
specific operand unfailingly avoids a syntax error in case of an anomaly.
Anomalies occur if at least one operand is a non-atomic expression and

the above conditions with respect to the precedence levels are fulfilled.
Another contribution to the occurrence of anomalies is the existence of
grammar conflicts (parsing ambiguities) in the expression grammar of
later versions. The parser generator reported 114 conflicts on the ex-
pression level of version 2.8, many of them related to optional suffixes
(USING, AT, STARTING AT) supported by several operators.

5. Discussion

The Arden Syntax standard originated in the late 1980s [18] and has
been constantly evolving during a series of reviews [19]. Changes in the
standard have been carefully designed, and the Arden Syntax con-
stitutes a proven technology that has been integrated into a number of
commercial clinical information systems. A calculated overall propor-
tion of 24.8% anomalies may create a highly misleading impression and
thus requires a careful discussion. The Arden Syntax has been tailored
to data-driven event monitoring functions. The typical expression pat-
terns in this specific use case do not include any anomalies. Moreover,
anomalies generally presuppose expression nesting, and since the de-
cision logic of a typical MLM is relatively straightforward, nesting is not
necessarily required. Consequently, a knowledge engineer may create
large sets of MLMs without ever facing this issue. Moreover, hardly any
of the detected anomalies have practical relevance with respect to
knowledge representation. For example, “SINE UPPERCASE < expr > ”
has no practical relevance at all, because it always results in a NULL
value. An MLM author would hardly ever intend to calculate the sine of
an uppercase string. Another point is that recent Arden Syntax versions,
which are more strongly affected by anomalies, may not have been
widely distributed yet.

Anomalies are not accepted by an Arden Syntax compiler, thus they
cannot result in false calculations or even wrong clinical decisions. To
an experienced Arden Syntax knowledge engineer, if he ever faces them
at all, they are therefore little more than a cosmetic problem. They can
easily be sidestepped by parenthesizing the specific operand. Thus,
there is no urgent need to systematically eliminate anomalies from the
standard. A more important question may be whether they impede
knowledge engineering, which would undermine its design goal of
being easily accessible for clinicians. If so, a partial adjustment of the
grammar may facilitate the acceptance and dissemination of Arden
Syntax in clinical settings. At a workshop held by the German Society of
Medical Informatics in April 2016, the implications of anomalies have
been discussed. Most participants pointed out that their occurrence may
confuse potential knowledge engineers during their initial experiences
with creating MLMs. It has been long established that the difficulties of
finding capable domain experts that are willing to encode medical
knowledge constitutes “the biggest bottleneck in the development of expert
systems” [20], so beginners should not be confused by counterintuitive
syntax error messages. From this point of view, even those anomalies
that have no practical relevance may be seen as problematic, insofar as
a beginner might try irrelevant expressions to gain experience with the
language constructs. For example, it may be confusing that an expres-
sion such as “UPPERCASE SINE < expr > ” is processed, while “SINE
UPPERCASE < expr > ” (same operators, different order) causes an
error.

In our opinion, the Arden Syntax should be free from any anomalies,
and a revision of the grammar should be considered. Throughout the
evolution of the Arden Syntax, great importance was laid on backward
compatibility, even when fundamentally new functionality such as
objects [21] or fuzzy logic [17] was introduced. Removing anomalies
from the standard would necessarily break with backward compat-
ibility. The actual extent of a revision, however, would be limited in-
sofar as the majority of the operators would remain unchanged.
Moreover, the standard might considerably benefit from an easier
maintenance, as explained below.

Fig. 1. Conditions for the occurrence of an anomaly.

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

200

5.1. Anomalies in contrast to unexpected evaluation order

The anomalies described in this paper are to be strictly dis-
tinguished from unexpected behavior in terms of the order of evalua-
tion. An anomaly is never processed by an Arden Syntax environment,
but rejected as a syntax error at compile time, despite valid sub-ex-
pressions. Anomalies may seem rather unpredictable to a knowledge
engineer, unless he is familiar with specific details from the expression
grammar of the Arden Syntax, which will rarely be the case. This issue
appears to be yet unaddressed in the specification and the literature.

An unexpected evaluation order, in contrast, never results in a
syntax error, but in an unexpected calculation result during runtime. In
case of nested expressions without parentheses, the evaluation order is
determined by the operator precedence as stated in annex A4 of the
specification. In some cases, this order may be difficult to understand
for a less experienced knowledge engineer who is not entirely familiar
with the operator precedence of the Arden Syntax. Hripcsak et al. had
already addressed a potentially unexpected evaluation order in Section
6.6 of the rationale for the Arden Syntax [1]. More recently, Jung et al.
had referred to this matter in the context of ArdenML [22], where an
XML structure explicitly determines the evaluation order, thus avoiding
an unintended order. On the one hand, a programming language that
does not enforce parentheses around arguments enables easy-to-un-
derstand expressions that are close to natural language. On the other
hand, such a language presupposes adequate skills and attention on the
side of the knowledge engineer if expressions are nested. In case he
should be unsure of the operator precedence, he can make use of par-
entheses. A potentially unexpected evaluation order can hardly be
avoided, because it depends on the skills of the knowledge engineer.
Anomalies, in contrast, could be completely avoided, provided that the
grammar is revised, because they result from technical aspects of the
design.

The Arden Syntax supports expressions of arbitrary complexity that
do “not require parentheses to force the obvious meaning” [1]. Hripcsak
et al. critically discuss their own design, declaring that keeping an
overview of multiple levels of operator precedence may be difficult, and
that “keeping only the most obvious precedences - simple arithmetic and
Boolean operations and requiring parentheses elsewhere - might have been a
better choice” [1]. In our opinion, the current design of the Arden Syntax
realizes the intended advantages in that it does enable easy-to-under-
stand expressions as in example (1I). Anomalies may impede the easy
comprehensibility to a certain extent, and thus should be eliminated.

5.2. Recommendations for grammar adjustments

Our recommendations for an alternative grammar are based on the
experimental PLAIN language. Although it is strongly influenced by the
Arden Syntax and implements more than 80 percent of its operators,
PLAIN is not intended primarily for knowledge representation, but for
clinical algorithms in general. The greater complexity of program code,
which is reflected, among other things, in more frequent and deeper
nesting of expressions, requires stricter formalization. This contributed
to the decision to replace the specification-compliant grammar by a
complete rewriting. The PLAIN expression grammar itself is strongly
influenced by the experimental, not fully specification-compliant Arden
Syntax implementation ARSEN/IC, which has been used for some

previous projects [6,23,24], and has been conceived for research on
possible extensions and alternative implementation approaches.

The main difference between the standard-compliant grammar and
the experimental grammar lies in the fundamental encoding approach.
The Arden Syntax grammar encodes operator precedence and associa-
tivity by means of distinct nonterminal symbols, such as < expr_or > ,
as shown in Fig. 2(A). Fig. 2(B1) and (B2) show the corresponding
details from the PLAIN grammar, using the input grammar format of the
specific open source parser generator. It uses a single nonterminal
symbol < ex > for any operand and controls precedence and associa-
tivity solely by precedence declarations such as %left, as illustrated in
Fig. 2(B2). The use of nonterminal symbols is thus reduced to a
minimum. This encoding approach points out some problem areas re-
lated to anomalies. For example, in this approach there is a conflict
between the FIRST and the FIRST FROM operator. The Arden Syntax
grammar circumvents this conflict by the operand of FIRST referring to
< expr_function > , while the first operand of FIRST FROM refers to
< expr_factor > (see [5], page 124). This avoids the conflict, but
simultaneously creates the anomaly illustrated in Fig. 1. With the al-
ternative approach, the conflict cannot be avoided by choosing dif-
ferent non-terminal symbols, since there is only one symbol for any
precedence level. The conflict can only be resolved by a minor mod-
ification of the language, which also eliminates the anomaly (see also
the recommendations in the supplementary material).

The results in Table 1 show that PLAIN is not affected by anomalies.
Besides changing the encoding approach as outlined in Fig. 2(B1) and
(B2), this also required adjusting several operators, such as moving
optional suffixes to an infix position, if possible. PLAIN does not support
the FROM operator ([5] 9.10.4), as the token FROM is also used in 15
other operators, contributing to multiple issues. The FROM operator
can be dispensed with anyway, because it is merely an alias for the
AFTER operator, which has exactly the same semantics. Moreover, a
few operators, such as SORT and ADD, have been transformed to
statements. Such language adjustments necessarily result in a loss of
backward compatibility with earlier Arden Syntax versions. However,
the planned next version 3.0 of the Arden Syntax will also break with
backward compatibility.

A further recommendation refers to the Arden Syntax specification.
The instructions for the use of parentheses should be clarified. We
would recommend that parentheses can generally be omitted and that
they are used exclusively to control the evaluation order Consequently,
PLAIN does not enforce parentheses in case of consecutive arithmetic
operators. In addition, all non-associative operators have been changed
to left-associativity or right-associativity (see the example grammar in
the supplementary material).

5.3. Migration of existing MLMs

Only minor syntactical changes are required for migrating existing
MLMs to the proposed experimental grammar. The annex of specifica-
tion 2.8 contains eight sample MLMs X4.1 to X4.8. The only changes
required in these MLMs are illustrated in Fig. 3 using the example MLM
X4.6. Fig. 3(A) shows a detail from this MLM. Fig. 3(B) shows the re-
quired adjustments to this MLM in the form of three additional OF
keywords. None of the eight example MLMs requires further changes
beyond this use of the OF keyword. In the current version of the

Fig. 2. Details from the grammars. (A) shows a detail
from the Arden Syntax grammar. (B1) and (B2) show
details from the PLAIN grammar; (B1) shows some
rules, while (B2) shows the corresponding pre-
cedence declarations.

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

201

experimental grammar, the aggregation operators FIRST ([5], 9.12.12)
and LAST ([5], 9.12.11) must use the otherwise optional OF keyword to
avoid an ambiguity with regard to the transformation operators FIRST
FROM ([5], 9.14.4) and LAST FROM ([5], 9.14.5) which would result in
an anomaly. The aggregation operators EARLIEST, LATEST, MINIMUM,
and MAXIMUM also have to use the OF keyword to avoid ambiguities
with the related transformation operators. However, making the OF
keyword mandatory may be only a temporary solution insofar as any
other adjustment that prevents the grammar rules of two different op-
erators from starting with two identical symbols eliminates the ambi-
guity. The eventual solution is a matter of discussion with the clinical
users.

The only noteworthy change refers to sorting data structures.
Version 2.8 of the standard introduced an optional USING modifier.
This feature is well-designed, nevertheless optional suffixes on the ex-
pression level result in some anomalies. PLAIN circumvents this pro-
blem by shifting the sorting of data structures to the statement level.

(4A) patients := SORT patients USING IT.bednumber;
(4B) SORT patients USING IT.bednumber;

Example (4A) shows a complete Arden Syntax statement that sorts a list
of patient objects by their bed number. The sort operator returns a
sorted list that is in this specific example assigned to the same variable
name. Example (4B) shows the corresponding PLAIN statement, that
performs an in-place sorting of the list. Both approaches have their
specific advantages and are basically equivalent. One of the advantages
of (4B) is that there are no anomalies, since statements cannot be nested
arbitrarily, unlike expressions. However, there are several other po-
tential solutions, such as transforming the unary SORT operator to a
binary operator like ORDER BY, so the eventual solution is a matter of
discussion.

5.4. Advantages regarding maintenance

In addition to eliminating the anomalies, an alternative expression
grammar such as our proposed approach could simplify maintenance
and further development, as it substantially reduces complexity. The
standard-compliant expression grammar has grown complex over time
and now utilizes 54 different nonterminal symbols, 23 of them to en-
code precedence and associativity. The experimental expression
grammar, in contrast, is a clearly arranged flat list, with one rule for
each operator, and only six different nonterminal symbols. For ex-
tensive expression grammars this is a more comfortable approach, be-
cause it avoids complex coding of precedence levels using a multitude
of different non-terminal symbols, which can make it difficult to keep
an overview. The alternative approach allows for a clearer coding and
an easier resolution of potential ambiguities. Moreover, the grammar
does not have to be adapted in its structure for a possible change of the
operator's precedence (see chapter three in [14]). Besides that, the
experimental approach could facilitate the implementation of operator-

specific characteristics, which may further increase the desired resem-
blance to natural language. This aspect may be discussed in another
publication. However, a disadvantage of our proposed approach is that
it is less flexible in terms of implementation. While the original Arden
Syntax grammar can be implemented with LALR(1) as well as LL(1)
parser generators [1], our suggested alternative is limited to LALR(1).

6. Conclusion

The Arden Syntax standard is affected by anomalies on the expres-
sion level. Most of them have no practical significance with respect to
knowledge engineering. Anomalies cannot result in false calculations or
decisions, simply because they are not processed at all. Thus, one may
deem them merely a cosmetic problem. However they may be potential
points of confusion for MLM authors. We therefore recommend an ad-
justment of the grammar similar to the alternative approach described
above. Such a revision would not only eliminate the anomalies, but
could also facilitate maintenance. A prototype of the experimental
PLAIN language for clinical algorithms already uses such a revised
Arden Syntax grammar.

Conflict of interest statement

The authors declared that there is no conflict of interest.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jbi.2018.05.008.

References

[1] G. Hripcsak, P. Ludemann, T.A. Pryor, O.B. Wigertz, P.D. Clayton, Rationale for the
Arden Syntax, Comput. Biomed. Res. 27 (1994) 291–324.

[2] G. Hripcsak, P.D. Clayton, R.A. Jenders, J.J. Cimino, S.B. Johnson, Design of a
clinical event monitor, Comput. Biomed. Res. 29 (1996) 194–221.

[3] S. Kraus, I. Castellanos, D. Toddenroth, H.-U. Prokosch, T. Burkle, Integrating
Arden-Syntax-based clinical decision support with extended presentation formats
into a commercial patient data management system, J. Clin. Monit. Comput. 28
(2014) 465–473, http://dx.doi.org/10.1007/s10877-013-9430-0.

[4] S. Kraus, Generalizing the Arden Syntax to a common clinical application language,
Stud. Health Technol. Inform. 247 (2018) 675–679.

[5] Health Level Seven International: The Arden Syntax for Medical Logic Systems,
Version 2.8, 2012.

[6] S. Kraus, M. Enders, H.-U. Prokosch, I. Castellanos, R. Lenz, M. Sedlmayr, Accessing
complex patient data from Arden Syntax Medical Logic Modules, Artif. Intell. Med.
(2015), http://dx.doi.org/10.1016/j.artmed.2015.09.003.

[7] G. Hripcsak, Writing Arden Syntax medical logic modules, Comput. Biol. Med. 24
(1994) 331–363.

[8] M. Gietzelt, U. Goltz, D. Grunwald, M. Lochau, M. Marschollek, B. Song, K.-H. Wolf,
ARDEN2BYTECODE: a one-pass Arden Syntax compiler for service-oriented deci-
sion support systems based on the OSGi platform, Comput. Methods Programs
Biomed. 106 (2012) 114–125, http://dx.doi.org/10.1016/j.cmpb.2011.11.003.

[9] H.C. Karadimas, C. Chailloleau, F. Hemery, J. Simonnet, E. Lepage, Arden/J: an
architecture for MLM execution on the Java platform, J. Am. Med. Inform. Assoc. 9
(2002) 359–368.

[10] K. Fehre, H. Mandl, K.-P. Adlassnig, A fuzzy Arden syntax compiler, Austrian
Computer Society, Vienna, 2010, pp. 207–212.

[11] R.A. Kuhn, R.S. Reider, A C++ framework for developing Medical Logic Modules
and an Arden Syntax compiler, Comput. Biol. Med. 24 (1994) 365–370.

[12] G. Hripcsak, J.J. Cimino, S.B. Johnson, P.D. Clayton, The Columbia-Presbyterian
Medical Center decision-support system as a model for implementing the Arden
Syntax, Proc. Annu. Symp. Comput. Appl. Med. Care 248–52 (1991).

[13] T.A. Mogensen, Introduction to Compiler Design, Springer-Verlag, London Limited,
London, 2011.

[14] J. Levine, Flex & Bison, O'Reilly Media Inc, Sebastopol, 2009.
[15] K.-P. Adlassnig, K. Fehre, A. Rappelsberger, Fuzzy-Arden-Syntax-based, vendor-

agnostic, scalable clinical decision support and monitoring platform, Stud. Health
Technol. Inform. 216 (2015) 1111.

[16] T. Vetterlein, H. Mandl, K.P. Adlassnig, Processing gradual information with Fuzzy
Arden syntax, Stud. Health Technol. Inform. 160 (2010) 831–835.

[17] T. Vetterlein, H. Mandl, K.-P. Adlassnig, Fuzzy Arden Syntax: a fuzzy programming
language for medicine, Artif. Intell. Med. 49 (2010) 1–10, http://dx.doi.org/10.
1016/j.artmed.2010.01.003.

Fig. 3. Examples of adjustments that would be necessary for migrating existing
MLMs. (A) Detail from the example MLM X4.6 in Arden Syntax specification
2.8. (B) Necessary adjustments are limited to the addition of the keyword OF to
the operators FIRST and LAST.

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

202

http://dx.doi.org/10.1016/j.jbi.2018.05.008
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0005
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0005
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0010
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0010
http://dx.doi.org/10.1007/s10877-013-9430-0
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0020
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0020
http://dx.doi.org/10.1016/j.artmed.2015.09.003
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0035
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0035
http://dx.doi.org/10.1016/j.cmpb.2011.11.003
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0045
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0045
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0045
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0055
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0055
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0060
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0060
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0060
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0065
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0065
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0070
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0075
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0075
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0075
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0080
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0080
http://dx.doi.org/10.1016/j.artmed.2010.01.003
http://dx.doi.org/10.1016/j.artmed.2010.01.003

[18] G. Hripcsak, O.B. Wigertz, P.D. Clayton, Origins of the Arden Syntax, Artif. Intell.
Med. (2015), http://dx.doi.org/10.1016/j.artmed.2015.05.006.

[19] R.A. Jenders, K.-P. Adlassnig, K. Fehre, P. Haug, Evolution of the Arden Syntax: key
technical issues from the standards development organization perspective, Artif.
Intell. Med. (2016), http://dx.doi.org/10.1016/j.artmed.2016.08.001.

[20] J.R. Olson, H.H. Rueter, Extracting expertise from experts: methods for knowledge
acquisition, Expert Syst. 4 (1987) 152–168, http://dx.doi.org/10.1111/j.1468-
0394.1987.tb00139.x.

[21] R.A. Jenders, R. Corman, B. Dasgupta, Making the standard more standard: a data
and query model for knowledge representation in the Arden syntax, AMIA Annu.
Symp. Proc. (2003) 323–330.

[22] C.Y. Jung, J.-Y. Choi, S.J. Jeong, K. Cho, Y.D. Koo, J.H. Bae, S. Kim, Transformation
of Arden Syntax's medical logic modules into ArdenML for a business rules man-
agement system, Artif. Intell. Med. (2016), http://dx.doi.org/10.1016/j.artmed.
2016.03.005.

[23] S. Kraus, I. Castellanos, M. Albermann, C. Schuettler, H.-U. Prokosch, M. Staudigel,
D. Toddenroth, Using Arden Syntax for the generation of intelligent intensive care
discharge letters, Stud. Health Technol. Inform. 228 (2016) 471–475.

[24] S. Kraus, C. Drescher, M. Sedlmayr, I. Castellanos, H.-U. Prokosch, D. Toddenroth,
Using Arden Syntax for the creation of a multi-patient surveillance dashboard, Artif.
Intell. Med. (2015), http://dx.doi.org/10.1016/j.artmed.2015.09.009.

S. Kraus et al. Journal of Biomedical Informatics 83 (2018) 196–203

203

http://dx.doi.org/10.1016/j.artmed.2015.05.006
http://dx.doi.org/10.1016/j.artmed.2016.08.001
http://dx.doi.org/10.1111/j.1468-0394.1987.tb00139.x
http://dx.doi.org/10.1111/j.1468-0394.1987.tb00139.x
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0105
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0105
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0105
http://dx.doi.org/10.1016/j.artmed.2016.03.005
http://dx.doi.org/10.1016/j.artmed.2016.03.005
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0115
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0115
http://refhub.elsevier.com/S1532-0464(18)30091-1/h0115
http://dx.doi.org/10.1016/j.artmed.2015.09.009

	A detailed analysis of the Arden Syntax expression grammar
	Introduction
	Background
	Medical Logic Modules
	Statements and expressions
	Use of parentheses

	Methods
	Results
	Discussion
	Anomalies in contrast to unexpected evaluation order
	Recommendations for grammar adjustments
	Migration of existing MLMs
	Advantages regarding maintenance

	Conclusion
	Conflict of interest statement
	Supplementary material
	References

