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a b s t r a c t

Background: Many electronic infection detection systems employ dichotomous classification methods,
classifying patient data as pathological or normal with respect to one or several types of infection. An elec-
tronic monitoring and surveillance system for healthcare-associated infections (HAIs) known as Moni-ICU
is being operated at the intensive care units (ICUs) of the Vienna General Hospital (VGH) in Austria. Instead
of classifying patient data as pathological or normal, Moni-ICU introduces a third borderline class. Patient
data classified as borderline with respect to an infection-related clinical concept or HAI surveillance def-
inition signify that the data nearly or partly fulfill the definition for the respective concept or HAI, and
are therefore neither fully pathological nor fully normal.
Objective: Using fuzzy sets and propositional fuzzy rules, we calculated how frequently patient data are
classified as normal, borderline, or pathological with respect to infection-related clinical concepts and HAI
definitions. In dichotomous classification methods, borderline classification results would be confounded
by normal. Therefore, we also assessed whether the constructed fuzzy sets and rules employed by Moni-
ICU classified patient data too often or too infrequently as borderline instead of normal.
Participants and methods: Electronic surveillance data were collected from adult patients (aged 18 years
or older) at ten ICUs of the VGH. All adult patients admitted to these ICUs over a two-year period were
reviewed. In all 5099 patient stays (4120 patients) comprising 49,394 patient days were evaluated. For
classification, a part of Moni-ICU’s knowledge base comprising fuzzy sets and rules for ten infection-
related clinical concepts and four top-level HAI definitions was employed. Fuzzy sets were used for the
classification of concepts directly related to patient data; fuzzy rules were employed for the classification
of more abstract clinical concepts, and for top-level HAI surveillance definitions. Data for each clinical
concept and HAI definition were classified as either normal, borderline, or pathological. For the assess-
ment of fuzzy sets and rules, we compared how often a borderline value for a fuzzy set or rule would result
in a borderline value versus a normal value for its associated HAI definition(s). The statistical significance
of these comparisons was expressed in p-values calculated with Fisher’s exact test.
Results: The results showed that, for clinical concepts represented by fuzzy sets, 1–17% of the data were
classified as borderline. The number was substantially higher (20–81%) for fuzzy rules representing more
abstract clinical concepts. A small body of data were found to be in the borderline range for the four top-
level HAI definitions (0.02–2.35%). Seven of ten fuzzy sets and rules were associated significantly more
often with borderline values than with normal values for their respective HAI definition(s) (p < 0.001).
Conclusion: The study showed that Moni-ICU was effective in classifying patient data as borderline for
infection-related concepts and top-level HAI surveillance definitions.
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1. Introduction

Electronic systems for the detection and monitoring of
healthcare-associated infections (HAIs) have become common in
clinical routine over the last decade [1–3]. Electronic monitoring is
considered superior to traditional surveillance because electronic
systems are faster, require less human resources, and are not sub-
ject to inter-rater variability as manual surveillance is [3–6].

A common limitation of electronic infection monitoring systems
is that they employ dichotomous “yes/no” classification methods,
thereby classifying an infection as either present or absent. Con-
sequently, borderline infection cases, i.e., patients who show vital
signs and laboratory test results that nearly or partially fulfill the
conditions defined in the infection surveillance rules are not explic-
itly recognized. Instead, they are confounded by patients whose
vitals and test results are normal. Borderline infection cases are
clinically relevant, as these patients are at a high risk of developing
infection, need close monitoring and possibly interventions as well.
As such, failing to identify borderline infection cases reduces the
usefulness of electronic infection monitoring systems in predicting,
alerting, and preventing infection.

One way of differentiating borderline infection cases from
patients without signs of infection is through the integrated use
of fuzzy sets and logic [7]. By using fuzzy sets for the formal rep-
resentation of infection-related clinical concepts such as fever,
hypertension, or leukocytosis, we extend the traditional dichoto-
mous classification methods. An accurately defined fuzzy set can
classify patient data as not compatible (normal), fully compatible
(pathological), or expressing a degree of compatibility (nearly or
partly pathological, or borderline) with respect to a clinical concept
under consideration. In the latter case, a degree of compatibility
between measured or observed patient data and the respective
clinical concept represents a gradual transition from normal to
pathological values for the respective concept. After the initial eval-
uation of clinical concepts using fuzzy sets, fuzzy logic is used to
evaluate logical combinations of these concepts in order to draw
conclusions about higher-level concepts, and ultimately infer the
full or partial compatibility or non-compatibility of the top-level
HAI terms with the underlying patient data.

Electronic HAI monitoring systems using fuzzy sets and logic
remain as effective as their non-fuzzy counterparts in the detec-
tion of pathological infection cases [8]. However, they possess the
additional ability to permit a distinction between patients with
a suspected borderline infection and normal patients. This ability
offers the following advantages: (a) more accurate feedback on the
patients’ status to the attending physicians and the infection con-
trol experts, and (b) identifying incipient and recurring infections
[9], which allows early therapeutic intervention.

The goal of the present study was to separate borderline infec-
tion cases from patients without signs of infection, and assess
the size of the newly created patient group with respect to the
aforementioned two patient classes (normal and pathological).
Using the electronic HAI surveillance and monitoring system Moni-
ICU [10–12], we calculated the frequencies of patient data in the
categories of normal, borderline, or pathological for all of the incor-
porated fuzzy sets. The results of the application of fuzzy rules for
higher-level clinical concepts and HAI surveillance definitions were
calculated in the same manner. We also analyzed the present defi-
nitions of fuzzy sets and rules to ensure they did not classify patient
data too often or too infrequently as borderline rather than normal.
To this end, we postulated the hypothesis that borderline values for
a clinical sign or symptom should more often result in a borderline
value than in a normal value for its associated HAI definition(s). By
constructing contingency tables for each fuzzy set and fuzzy rule
and their associated HAI definition(s), we were able to express the

ability of a fuzzy set or fuzzy rule in separating borderline infection
cases from normal patients with the aid of p-values.

2. Background

2.1. Fuzzy set theory and fuzzy logic

Fuzzy set theory and fuzzy logic are being developed since 1965.
Fuzzy sets have been introduced to express partial membership of
objects to classes, which are usually characterized by their linguis-
tic terms. A so-called degree of membership [13] indicates the degree
to which the linguistic term is present; it expresses the degree
of compatibility between the measured underlying value and the
concept under consideration. Subjectively interpretable linguistic
clinical concepts are commonly used in medical definitions, pro-
tocols, and guidelines. Fuzzy sets can be employed to model the
unsharpness of clinical terms when trying to diagnose a patient’s
condition on the basis of his/her medical data [14,15]. This pro-
cess includes the calculation of compatibility between measured
patient data and the linguistic clinical concept under consideration
(Fig. 1).

Fuzzy logic can be used to evaluate logical combinations of con-
cepts that are assigned a degree of membership [16]. In the present
study, we employed propositional fuzzy logic, a many-valued logic
used to reason and make inferences about one or more evaluated
fuzzy sets (including the results of the evaluation of crisp sets as
a specialization of fuzzy sets). We employed three propositional
fuzzy operators throughout this report: conjunction, disjunction,
and negation.

Conjunction is commonly interpreted by a t-norm �:
[0,1]2 → [0,1]. Any t-norm is associative, commutative, neutral with
respect to 1, and isotone in both arguments [17]. Disjunction is usu-
ally interpreted by the corresponding t-conorm ⊕: [0,1]2 → [0,1].
For the present study we used the Gödel t-norm �G, the associ-
ated Gödel t-conorm ⊕G, and the standard negation function ¬:
[0,1] → [0,1]. Given x, y ∈ [0,1], these are defined as follows:

x�Gy = min (x, y)

x⊕Gy = max (x, y)

¬x = 1 − x

Fuzzy set theory and fuzzy logic have become increasingly pop-
ular in medicine over the last thirty years, especially in the areas of
fuzzy classification and inference [18,19]. Abbod et al. [20] provide
an overview of applications using fuzzy sets and/or fuzzy logic in
many specialties disciplines of medicine while Mahfouf et al. [21]
present a comprehensive survey on applications in medicine that
use fuzzy logic for monitoring and control.

2.2. Healthcare-associated infections

An ICU-based HAI is defined as an infection manifested in a
patient later than 48 h after admission to the ICU. Electronic HAI
monitoring is based on the ICU surveillance rules defined by the
European Centre for Disease Prevention and Control (ECDC) surveil-
lance program. Several definitions of infection are included therein
[22]:

• Blood stream infection (BSI),
• Pneumonia (PN1-5),
• Central venous catheter-related infection (CRI1-2),
• Urinary tract infection (UTI-A and -B).



J.S. de Bruin et al. / Artificial Intelligence in Medicine 69 (2016) 33–41 35

Fig. 1. Graphic depiction of a fuzzy set for the linguistic clinical concept increased body temperature. The x-axis shows the range of human body temperature (◦C) while
the y-axis shows the compatibility of a specific patient’s body temperature with the concept increased body temperature. The range of input values that yields a degree of
compatibility between zero and one (transition range) is between 37.5 ◦C and 38 ◦C. 38 ◦C is the threshold for fever as defined by the European Centre for Disease Prevention
and Control (ECDC) for its HAI surveillance program. The 37.5 ◦C threshold was established by clinical experts for the purpose of early intervention.

In the present study, we analyzed patient data in monitoring BSI,
CRI2, UTI-A, and UTI-B. Pneumonia was omitted because radiology
findings are not yet available for automated import into Moni-ICU
at the Vienna General Hospital (VGH). CRI1 was also not included
because its present definition in the knowledge base of Moni-ICU
does not involve fuzzy sets or fuzzy rules.

3. Methods

3.1. Study setting and design

Data from ten ICUs at the VGH, a 2133-bed tertiary care and
teaching hospital run jointly with the Medical University of Vienna
(MUV) were used for the study, which was reviewed and approved
by the ethics committee of MUV (approval number 1888/2012).

3.2. Participants and study period

All adult patients (aged 18 or older) present in, or admitted
to, one of the ten selected ICUs between 1 January 2011 and 31
December 2012 were eligible for the study. In accordance with the
ECDC surveillance guidelines on HAIs, patients staying for 48 h or
less in an ICU were excluded.

3.3. Data sources

Moni-ICU imports clinical, laboratory, and nursing data from
the Philips IntelliSpace Critical Care and Anesthesia (ICCA) patient
data management system, which is employed in the ICUs of the
VGH. For microbiology data, Moni-ICU is connected with the MOLIS
laboratory information system at the Clinical Department of Clin-
ical Microbiology. Data from the two sources are consolidated by
unique patient and ward admission identifiers.

3.4. Knowledge base and data processing

Moni-ICU, an electronic HAI monitoring system developed
jointly by VGH and MUV, was used for data processing. Moni-ICU

is being used since 2004 as a support tool for infection monitoring
and surveillance as well as research projects.

The knowledge base consists of computerized, formal repre-
sentations of ECDC’s HAI surveillance definitions implemented
in Arden Syntax 2.7. Arden Syntax is a programming language
for encoding medical knowledge in both machine- and human-
readable form. The sequence and conditions of processing input
and output data are specified in so-called medical logic modules
(MLMs) [23,24]. Each MLM in the knowledge base is executed once
a day for each patient. If necessary, the defined MLMs can take input
data accumulated over a period of seven days into account.

3.4.1. Fuzzy sets
Fuzzy sets are used to represent infection-related clinical con-

cepts for which compatibility can be determined directly from the
available measured raw data. Fuzzy sets for six clinical concepts are
taken into account: increased body temperature, shock, drop in blood
pressure, increased C-reactive protein, leukopenia, and leukocytosis
(Table 1).

The aforementioned fuzzy sets were defined by infection control
experts together with clinical knowledge engineers. For each fuzzy
set, numerical thresholds for pathological values as defined by the
ECDC surveillance rules were used. When a threshold was not avail-
able, it was determined by clinical expertise. A second threshold
signifying the end of the range for normal values was also defined.
The space between the two thresholds is referred to as the transi-
tion range, in which degrees of compatibility are determined by a
monotonically increasing linear function.

3.4.2. Fuzzy rules
Several concepts in Moni-ICU represent aggregated, higher-

level clinical terms that cannot be directly derived from raw
measured data (Table 2). These concepts include fever incorporating
thermoregulation, hypotension/shock, clinical signs of BSI, and clinical
signs of UTI.

The four top-level terms in ECDC’s HAI surveillance definitions
discussed in the present study are BSI, CRI2, UTI-A, and UTI-B.
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Table 1
Overview of infection-related clinical concepts in Moni-ICU, represented by fuzzy sets.

Clinical concept (unit) Fuzzy set

Normal range Transition range Pathological range

Increased body temperature (◦C) [0,37.5] ]37.5, 38[a [38,+∞] b

Shock (systolic blood pressure/heart rate) [1.3, +∞] ]1, 1.3[a [0,1] b

Drop in blood pressure (lower percentile difference of average over two days) [100,37.5] ]37.5, 25[a [25,0] b

Increased C-reactive protein (mg/dl) [0,1] ]1, 6[c [6,+∞] b

Leukopenia (WBC/mm3) [5000,+∞] ]4,000, 5,000[d [0,4,000] b

Leukocytosis (WBC/mm3) [0,11000] ]11,000, 12,000[d [12,000,+∞] b

Note: [] indicates thresholds are included in the interval;] [indicates thresholds are excluded from the interval; WBC, white blood cell.
a As defined by clinicians.
b As defined by the CDC/NHSN [25], ECDC [22], and KISS [26] infection surveillance programs for retrospective surveillance purposes.
c As defined by clinicians; C-reactive protein is an early-phase protein, useful for prospective detection purposes.
d As defined by clinicians; WBC is a slow-reacting indicator, important for surveillance purposes.

Table 2
Overview of infection-related clinical concepts in Moni-ICU, represented by fuzzy rules.

Clinical concept Fuzzy rule or HAI definition

Fever incorporating thermoregulation Increased body temperature ⊕ (0.8 * #thermoregulation)
Hypotension/shock 0.8 * (Drop in blood pressure ⊕ shock)
Clinical signs of BSI Fever incorporating thermoregulation ⊕ hypotension/shock ⊕ increased C-reactive protein ⊕ leukopenia ⊕ leukocytosis
Clinical signs of UTI Fever incorporating thermoregulation ⊕ increased C-reactive protein ⊕ leukopenia ⊕ leukocytosis
BSI #PBC ⊕ (#CSC � Clinical signs of BSI)
CRI2 (¬#PBC) � Clinical signs of BSI � #PCC
UTI-A Clinical signs of UTI � #PUC
UTI-B Clinical signs of UTI � #diagnostic clue(s) for UTI other than PUC

Note: # indicates crisp concepts; � fuzzy conjunction; ⊕ fuzzy disjunction; ¬ fuzzy negation; HAI, healthcare-associated infection; PBC, positive blood culture; CSC, two or
more separate blood cultures positive for the same common skin contaminant; PCC, positive catheter culture; PUC, positive urine culture; BSI, blood stream infection; UTI,
urinary tract infection; CRI, central venous catheter-related infection.

Compatibility between patient data and the above concepts is
determined by rules that apply fuzzy logic operators on previously
evaluated concepts and rules (both crisp and fuzzy).

For some rules, compatibility is adjusted by a numerical modifier
(such as multiplication by 0.8). This modifier reflects uncertainty in
data or medical knowledge, or the influence of interventions. As an
example, consider the fuzzy rule for the concept fever incorporating
thermoregulation (cf., Table 2). It partly depends on the underlying
concept increased body temperature, but also on the crisp concept
thermoregulated. Patients with exceptionally high fever are cooled
with cooling pads or blankets. While this intervention implies that
the patient had high fever at one point in time, the patient’s elevated
body temperature cannot be measured as long as thermoregulation
is in progress. Therefore, any conclusion will be indirect, and the
compatibility for thermoregulated is adjusted using the aforemen-
tioned modifier.

To illustrate how the Moni-ICU system functions, consider the
patient data of Patient X, shown in Table 3. First, the values for clini-
cal concepts represented by fuzzy sets are determined (cf., Table 1).
In this example, borderline values are recorded for drop in blood
pressure (0.48), increased body temperature (0.6), and increased C-
reactive protein (0.56); all other input values are in the normal range
and therefore yield 0.

After all fuzzy sets have been processed, values for fuzzy rules
representing higher-level clinical concepts (cf., Table 2) are cal-
culated using standard negation, the Gödel t-norm and t-conorm.
Values for hypotension/shock and fever incorporating thermoregula-

tion are calculated first. For hypotension/shock, the maximum value
for either shock (0) or drop in blood pressure (0.48) is chosen, and
multiplied by 0.8. The resulting value is thus 0.48 × 0.8 = 0.384. For
fever incorporating thermoregulation, the highest value is chosen

between increased body temperature (0.6) and (#thermoregulation *
0.8). As thermoregulation was not applied to Patient X, the value is
0.6. Next, the values for clinical signs of BSI and clinical signs of UTI
are determined. Both rules propagate the maximum value of sev-
eral parameters previously calculated, including fever incorporating
thermoregulation. As this parameter has the highest calculated
value (0.6), it is propagated to both parameters.

After calculation of higher-level clinical concepts, values for the
top-level HAI definitions are determined. As no common skin con-
taminants nor any positive blood or urine cultures were present,
the value for BSI and UTI-A equals zero (cf., Table 2). Furthermore,
as no other diagnostic clues for UTI were present, UTI-B is also ruled
out. However, since there was no positive blood culture, a non-zero
value for the parameter clinical signs of UTI, and a positive catheter
culture, the value for the CRI2 rule (cf. Table 2) equals min ((1 − 0),
0.6, 1)) = 0.6. Thus we conclude that Patient X shows borderline signs
for CRI2. A workflow for this example is shown in Fig. 2.

3.5. Outcome measures

For each fuzzy set or rule, we present classification frequen-
cies (patient days) for each class (normal, borderline, pathological).
Since borderline patient data would be confounded by normal
patient data in dichotomous classification methods, we also spec-
ified a reclassification ratio (RR). This ratio expresses the relative
frequency of borderline patient data with reference to the fre-
quency of normal patient data before reclassification, defined as:

patient days with borderline patient data
patient days with borderline patient data + patient days with normal patient data

whereby RR ∈ [0,1]. This ratio can be interpreted as follows: if
RR yields zero it means there were no borderline patient data; if
RR yields one it means all patient data were borderline; values
between zero and one indicate the fraction of data previously clas-
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Table 3
Example patient data for Patient X.

Clinical data Microbiology data

Body temperature 37.8 ◦C Common skin contaminants no
Shock index 1.4 Positive blood culture no
Blood pressure index 31 Positive catheter culture yes
C-reactive protein level 3.8 mg/dl Positive urine culture (PUC) no
White blood cell count 7,000/mm3

Thermoregulation No
Diagnostic clues for UTI other than PUC No

Note: UTI, urinary tract infection.

Table 4
Frequency distributions for infection-related clinical concepts, modeled by fuzzy sets or fuzzy rules.

Clinical concept Frequency (%) RR

Normal Borderline Pathological

Fuzzy sets
Increased body temperature 35,839 (72.56) 3,235 (6.55) 10,320 (20.89) 0.083
Shock 20,270 (41.04) 8,056 (16.31) 21,068 (42.65) 0.284
Drop in blood pressure 20,849 (42.21) 3,805 (7.70) 24,740 (50.09) 0.154
Increased C-reactive protein 13,710 (27.76) 5,939 (12.02) 29,745 (60.22) 0.302
Leukopenia 47,214 (95.59) 642 (1.30) 1,538 (3.11) 0.013
Leukocytosis 30,792 (62.34) 1,666 (3.37) 16,936 (34.29) 0.051
Fuzzy rules
Fever incorporating thermoregulation 7,481 (15.15) 31,593 (63.96) 10,320 (20.89) 0.809
Hypotension/shock 9,742 (19.72) 39,652 (80.28) – 0.803
Clinical signs of BSI 218 (0.44) 12,019 (24.33) 37,157 (75.23) 0.982
Clinical signs of UTI 2,234 (4.52) 10,003 (20.25) 37,157 (75.23) 0.817
HAI surveillance definitions
BSI 47,787 (96.74) 8 (0.02) 1,599 (3.24) <0.001
CRI2 43,633 (88.34) 1,161 (2.35) 4,600 (9.31) 0.026
UTI-A 48,559 (98.31) 232 (0.47) 603 (1.22) 0.005
UTI-B 49,330 (99.87) 13 (0.03) 51 (0.10) <0.001

Note: RR, reclassification ratio; BSI, blood stream infection; CRI, Central venous catheter-related infection; UTI, urinary tract infection.

sified as normal, that were re-classified as borderline using fuzzy
sets and rules.

For the assessment of fuzzy sets and rules, data are presented
in 2 × 2 contingency tables with the variables “clinical concept
class” (borderline/normal) and “top-level HAI rule class” (border-
line/normal). The upper-left field indicates all patient days for
which values for both the clinical infection-related concept and
the associated top-level HAI rule(s) were borderline. The upper-
right field indicates all patient days for which the value for the
clinical infection-related concept was borderline, but the value for
the associated top-level HAI rule(s) was normal. The lower-left
field indicates all patient days for which the value for the clin-
ical infection-related concept was normal, but the value for the
associated top-level HAI rule(s) was borderline. Finally, the lower-
right field indicates all patient days for which values for both the
clinical infection-related concept and the associated top-level HAI
rule(s) were normal. Based on these contingency tables, we used
Fisher’s exact test for comparisons. The level of significance was
set to p < 0.05.

3.6. Data analysis

Data filtering and cleaning were performed with Microsoft Excel
2013. Study outcome measures and p-values were calculated in R
using the function for Fisher’s exact test for count data.

4. Results

In the study period, 4120 patients stayed at one or more of the
selected ICUs; 2454 patients were male (61.04%), and 1654 female
(41.14%); gender was not recorded for twelve patients. The patients’

ages ranged between 18–98 years, with a median of 61 years and an
interquartile range of 23. In all 5099 patient stays were recorded,
comprising 49,394 patient days. The duration of the hospital stay
ranged between 3–187 days, with a median of six days and an
interquartile range of ten.

On average 56.91% (27.76–95.59) of the data related to clinical
concepts modeled by fuzzy sets were classified as normal, 7.88%
(1.30–16.31) as borderline, and 35.21% (3.11–60.22) as pathologi-
cal (Table 4). Depending on the clinical concept, RR yields 0.01–0.30,
meaning that 1–30% of the data previously classified as normal
were reclassified into the borderline class.

For fuzzy rules, there were markedly more borderline classi-
fications and significantly fewer normal ones. On average 9.95%
(0.44–19.72) of the data were rated normal, 47.21% (20.25–80.28)
borderline, and 42.84% (0–75.23) pathological. For the higher-
level clinical symptoms of fever incorporating thermoregulation
and hypotension/shock, most data were classified as borderline
(63.96–80.28%). For rules aggregating clinical signs, most data were
classified as pathological (75.23%). Reclassification ratios were
high; 80-98% of the data were reclassified into the borderline
class.

Finally, the HAI surveillance definitions revealed very few bor-
derline or pathological results. On average 97.61% (88.34–99.87) of
the data were classified as normal, whereas only 0.41% (0.02–2.35)
were classified as borderline and 1.98% (0.10–9.31) as pathological.
The highest number of borderline and pathological classifica-
tions were registered for CRI2. The smallest number of borderline
infection cases was noted for BSI, and the smallest number of
pathological infections for UTI-B. As there were very few borderline
infection cases and most data were in the normal range, reclassifi-
cation ratios resembled borderline classification frequencies.
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Fig. 2. The knowledge base processing workflow using the data of Patient X. In phase 1, values for the fuzzy sets are calculated using the available measured raw patient
data. In phase 2, the resulting output values are used together with crisp clinical data to calculate values for more abstract clinical concepts. Finally, in phase 3 the output
values for these clinical concepts are used together with crisp microbiology data to calculate the values for the top-level HAI rules.

Table 5
Contingency table for the general group of infection-related concepts relevant to the detection of all types of HAIs.

Clinical concept All top-level HAIs p-valuea

Borderline Normal

Increased body
temperature

Borderline 115 2,687 0.33
Normal 1,245 30,516

Increased C-reactive
protein

Borderline 484 4,894 <0.001
Normal 876 12,102

Leukopenia Borderline 55 529 <0.001
Normal 1,305 39,723

Leukocytosis Borderline 71 1,389 0.41
Normal 1,289 26,094

Fever incorporating
thermoregulation

Borderline 1,150 26,762 <0.001
Normal 210 6,441

Note: HAI, healthcare-associated infection.
a A p-value for a clinical concept indicates the ability of the fuzzy set or rule representing that concept to separate borderline infection cases from normal ones. A p < 0.05

means that when a top-level HAI rule associated with the clinical concept was classified as borderline, the concept was also classified significantly more often as borderline
rather than normal.

For the assessment of fuzzy sets and fuzzy rules, we divided
infection-related concepts into three groups. The first was the gen-
eral group of infection-related concepts, which were associated
with all monitored HAIs (Table 5). The second was the BSI/CRI2-
specific group, comprising concepts associated with BSI and CRI2
(Table 6). The third was the UTI-specific group, consisting of con-
cepts solely associated with UTI-A and -B (Table 7).

Analysis showed that borderline values for three infection-
related clinical concepts did not co-occur significantly more often
with borderline values than with normal values for their associated
top-level HAI rules. The three concepts were increased body tem-
perature (p = 0.33), leukocytosis (p = 0.41) and shock (p = 0.18). For
all other infection-related clinical concepts the co-occurrence was
significant.
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Table 6
Contingency table for infection-related concepts relevant to the detection of bloodstream infection and catheter-related infection.

Clinical concept Top-level BSI and CRI2HAIs p-valuea

Borderline Normal

Shock Borderline 219 6,852 0.18
Normal 523 17,706

Drop in blood pressure Borderline 108 3,210 <0.001
Normal 398 18,104

Hypotension/shock Borderline 957 33,615 <0.001
Normal 191 8,619

Clinical signs of BSI Borderline 1,139 10,695 <0.001
Normal 0 199

Note: HAI, healthcare-associated infection; BSI, bloodstream infection; CRI, central venous catheter-related infection.
a see Table 5.

Table 7
Contingency table for infection-related concepts relevant to the detection of the urinary tract infection.

Clinical concept Top-level UTI-A and -B HAIs p-valuea

Borderline Normal

Clinical signs of UTI Borderline 243 9,760 <0.001
Normal 0 2,243

Note: HAI, healthcare-associated infection; UTI, urinary tract infection.
a see Table 5.

5. Discussion

We used fuzzy set theory and fuzzy logic to identify patient cases
with borderline signs of HAIs, and separated these from patients
with no signs of HAIs. The identification of borderline infection
is clinically relevant because it allows early recognition of incip-
ient infection. Especially in the ICU setting, where patients’ vital
signs and blood markers are repeatedly assessed and closely moni-
tored, the onset of infection should be identified rapidly [27]. Early
recognition is important because it permits early therapeutic or
organizational interventions by clinicians as well as infection con-
trol personnel, and improves the patient’s outcome [28].

The data showed that, for clinical concepts represented by fuzzy
sets and especially for higher-level clinical concepts represented by
fuzzy rules, the size of the borderline class was significant. Reclas-
sification ratios were sometimes very high (close to 100%). This
accurately reflects the difficulties faced by physicians in the pro-
cess of diagnosis. The determination of a pathological condition is
relatively clear for lower-level clinical concepts related to quanti-
tative patient data, but a clear-cut decision is very difficult when
all of these concepts have to be combined. This gives rise to inter-
rater variability, which is one of the major drawbacks of manual
infection surveillance [29].

Despite the frequent occurrence of borderline values for fuzzy
sets and rules, very few borderline values were found for HAI def-
initions. This is due to several factors. First, all of the discussed
HAI definitions involve microbiology laboratory results, which are
dichotomous by nature (pathogen grown yes/no). As microbiology
tests are not ordered in all cases, the data may not be available for all
patients. Even when a relevant microorganism is grown, the result
is reported only when microbes are found in relevant numbers
(according to the ECDC rules, thresholds from 102 to 105 colony-
forming units per ml of sample apply, depending on the type of
specimen [22]). Fuzzy sets could also be constructed for microbiol-
ogy reports with quantitative features, and borderline values could
then be determined. The rule definitions for clinical signs of BSI and
clinical signs of UTI is worthy of mention. The ECDC surveillance
definitions contain several infection-related criteria not recorded
electronically in the VGH hospital information system. To com-
pensate for this lack of data, the aforementioned fuzzy rules are
defined as a disjunction over the large majority of, or all infection

parameters (cf., Table 2). This is less restrictive than the ECDC def-
initions which state that, in some cases, the patient should have at
least two or more clinical symptoms. As a result, about 75% of the
patient days reveal pathological values for these aggregation rules.
While this results in the effective detection of infections [12], it also
makes the aggregation parameters less specific in the detection of
borderline infection.

The study data frequently showed borderline results for
hypotension/shock, but never showed fully pathological results.
Hypotension/shock indicates the temporal occurrence of abnor-
mally low blood pressure, which may be a sign of infection, but may
be due to other causes as well, such as medication [30]. To model
this lack of evidential power, the compatibility for the hypoten-
sion/shock rule (cf., Table 2) was adjusted mathematically by the
numerical modifier 0.8. An alternative would have been to rate
observed hypotension/shock signs as a pathological indication for
the concept only in cases when ICU personnel manually recorded
the presence of infection-related hypotension in a patient. This
never occurred during the study period.

The data showed that, for the fuzzy sets for increased body tem-
perature, leukocytosis, and shock, borderline results did not co-occur
significantly more often with borderline values than with normal
values for their associated top-level HAI rules. This indicates that
the transition ranges of these fuzzy sets are too unspecific. The
study data show that the average white blood cell count and body
temperature for borderline infection cases is higher than it is for
normal patients, and the average shock index is lower (data not
shown). This suggests that if the transition range of the associated
fuzzy sets were made smaller, they would be more specific.

The strengths of the present study are worthy of mention. It is
based on more than 5000 patient stays, comprising almost 50,000
patient days. As such, it provided enough data to accurately analyze
the frequency distributions of normal, borderline, and pathological
values for infection-related clinical concepts. Another strength is
the extensive availability of data (more than 99%). Only 446 out
of 49,394 patient days recorded by the ICU’s patient data manage-
ment system were missing due to export or registration problems.
Another strength is the transparent description of the system. This
report provides enough details to recreate a part of the system for
others to perform their own experiments with fuzzy sets and logic
for the detection of infection. Finally, to the authors’ knowledge
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there has been no previous discussion on the identification of bor-
derline infection cases, nor on the optimization of fuzzy sets and
rules using statistical methods.

The limitations of the study are also noteworthy. First, no gold
standard was available to confirm borderline infection cases. As the
system is used in clinical routine, data were evaluated prospectively
by infection control experts, and a sample of the results was also
evaluated retrospectively for correctness. However, the notion of a
borderline infection case is to a certain degree arbitrary; it depends
on the opinion of the involved expert(s). As such, the establish-
ment of a gold standard for borderline infection cases relies to a
great extent on a subjective interpretation of the ECDC rules, which
results in even greater inter-rater variability. Another limitation of
the study is the small number of borderline results for HAI defi-
nitions, which made it unfeasible to study fuzzy sets and rules for
individual ECDC-defined infections. Furthermore, since we had to
omit relevant subsets of ECDC-defined HAIs, we could only address
those infection entities included in the study. The respective patient
may, in fact, have had another ECDC-defined infection or even one
not covered by ECDC definitions.

Yet, some of the above limitations need further reflection. What
is the definition of a gold standard in this context? As described
above, a borderline condition is, by nature, off standard. Intelli-
gent IT tools which use fuzzy sets and fuzzy logic enable experts
to judge and even augment their own expertise. Possibly a “gold
standard” for borderline conditions could only be established by
the use of intelligent IT tools such as those employed in the present
study—merely because of the quantity and precision of the required
data and the lack of manpower to retrieve such a body of data.

We focused on compatibility between patient data and ECDC-
defined rules for HAIs produced by an electronic HAI monitoring
system, thereby supporting degrees of compatibility and the iden-
tification of an additional borderline patient class rather than a
traditional dichotomous classification mechanism. Other studies
have determined the effects of various infection risk factors in elec-
tronic detection of HAIs [1,2]. A substantial number of electronic
HAI detection systems have been created to detect one or more
types of HAIs [5,31–33]. However, all systems focus on the detec-
tion of definite HAI cases and disregard borderline infection cases.
This limits the usefulness of the systems for the detection and pre-
vention of infection because early identification of the signs and
symptoms of HAIs may be useful to predict the recurrence of CRI
episodes [9].

Fuzzy logic is not the sole means of identifying borderline infec-
tion cases. Several authors have used regression analysis methods
to detect a variety of HAIs [1,2,34]. These methods employ a prob-
abilistic model to predict the occurrence of an infection, and then
define a probability threshold for which the system most accurately
predicts infection. It is possible to define a second, lower probabil-
ity threshold, thereby creating a transition range. Analogous to our
method, all patient cases identified within this range could then be
considered borderline infection cases.

6. Conclusion

In the present study, we separated borderline infection cases
from patients without signs of infection. With the fuzzy sets and
fuzzy rules contained in its knowledge base, the Moni-ICU program
showed a sizable borderline class for infection-related concepts.
However, just a few cases of borderline infection were noted for
the top-level HAI definitions. Assessment of the fuzzy sets and rules
showed that, especially for clinical signs of UTI and clinical signs of
BSI, borderline indications appeared significantly more often for
borderline HAI cases. Based on the results of the study, clinical
knowledge engineers and infection control experts are able to tune

the knowledge base more accurately to optimize case recognition
for both definite and borderline infection cases.

In the future, we aim to utilize fuzzy sets and rules, and degrees
of compatibility in general, for a variety of purposes. First, the study
showed that p values were very small (<0.001) for several infection-
related concepts, which indicates that fuzzy sets for these concepts
could be adapted to include a wider range of input values in the
transition range. Based on these modifications, we might see more
borderline classifications for infection-related concepts and HAI
definitions. As the numbers grow, we might be able to divide the
borderline class into subclasses, which may be useful for recogniz-
ing patterns and generating clinical alerts.
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