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Abstract

This paper describes the fuzzy knowledge representation framework of the medical computer

consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition

techniques that have been developed to support the definition of knowledge concepts and inference

rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model

the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms

provide the basic inference processes. The elicitation and acquisition of medical knowledge from

domain experts has often been described as the most difficult and time-consuming task in

knowledge-based system development in medicine. It comes as no surprise that this is even more

so when unfamiliar representations like fuzzy membership functions are to be acquired. From

previous projects we have learned that a user-centered approach is mandatory in complex and ill-

defined knowledge domains such as internal medicine. This paper describes the knowledge

acquisition framework that has been developed in order to make easier and more accessible

the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for

patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation

framework. Special emphasis is laid on the motivations for some system design and data modeling

decisions. The theoretical framework has been implemented in a software package, the Knowledge

Base Builder Toolkit. The conception and the design of this system reflect the need for a user-

centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that

our approach can be successfully implemented in the context of a complex fuzzy theoretical
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framework. As a result, this critical aspect of knowledge-based system development can be

accomplished more easily.
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1. Introduction

In this paper, we describe the knowledge representation and the knowledge acquisition

procedures that support medical experts to add, edit and update their knowledge in

MedFrame/CADIAG-IV. First, we outline the representational framework by introducing

some of the basic concepts and by explaining how simple and complex medical data and

findings can be acquired and defined. Next, we explain the different steps and tools that are

available to the user to establish fuzzy relationships between different medical entities.

These two steps—the acquisition of all elements and their relationships—are the pre-

requisite for MedFrame/CADIAG-IV’s inference processes which use real patient data to

propose diagnostic and therapeutic hypotheses. Finally, we present a prototypical knowl-

edge acquisition software, the Knowledge Base Builder Toolkit, that we have implemented

to provide assistance for the domain experts and discuss some issues that require further

research.

One of the crucial tasks in knowledge-based system development is to acquire domain

knowledge that performs at least at the quality levels of true domain experts, does not

impose additional representational burden or extra rigidity, allows for task-adequate, user-

centered acquisition steps, and is adaptable to specialized uses. These requirements are

especially true for the complex field of medical diagnosis and therapy planning. Due to the

abundance, complexity, and uncertainty of medical knowledge, knowledge acquisition in

this field is an especially difficult and time-consuming task [9,26].

Medical knowledge, especially the nature of the relationships between symptoms,

physical signs, laboratory data, clinical findings, and diagnostic hypotheses can be

characterized as a collection of empirical facts, statistical data, scientific cause–effect

structures, and human experience. Uncertainty, with variations such as vagueness and

imprecision, can be found at almost every step in medical reasoning. Certainty factors in

computer systems like MYCIN [23], Bayesian inference models in ILIAD [27], Bayesian

belief networks [21], or QMR’s frequency weights and evoking strengths [18] are

prominent examples of different approaches to capture some of that uncertainty.

CADIAG-II, the predecessor of MedFrame/CADIAG-IV, was one of the first medical

expert systems to successfully apply fuzzy set theory and fuzzy inference rules to a variety

of medical fields such as rheumatology, gastroenterology and radiology [1,4,6,16].

The building of high-quality medical knowledge bases for medical consultation systems

requires the experts to state their relevant knowledge as concise and logically correct as

possible. Unfortunately, in many medical fields, there is often only few ‘proven’ knowl-

edge to acquire: physicians usually feel uncomfortable to add their ‘insights’ and ‘useful

associations’ as crisp rules, even when allowed to add some uncertainty to their inferences
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[20]. MedFrame/CADIAG-IV tries to smoothen this translation by allowing for—and

supporting the acquisition of—fuzziness in almost all knowledge-related steps (i.e. fuzzy

representations, fuzzy associations, and fuzzy inferences). Experts are thus not forced to

‘sharpen’ or ‘strengthen’ their knowledge just to make it useful for computer use. Many

types of uncertainty in data interpretations and the difficulty to create logically ‘definitive’

or ‘true’ inferences are accounted for in non-computerized situations by the use of

imprecise language. The idea to use ‘computations’ even for fuzzy linguistic concepts

was of course one of the motivations to establish the scientific study of fuzzy reasoning

[29].

As already stated above, MedFrame/CADIAG-IV is a fuzzy medical consultation

system in that it uses fuzzy methods for almost all knowledge processing tasks: it accepts

fuzzy inputs, operates on fuzzy sets with fuzzy rules, and produces fuzzy sets as output. Of

course, whenever appropriate or desired the system can defuzzify or approximate its

statements to crisp values. For example, rank-ordered lists of confirmed, possible, and

excluded diagnoses can be produced to help physicians to direct their next examination

steps.

However, the goal of consultation systems such as MedFrame/CADIAG-IV is–in

contrast to some early expert systems—not solely to come up with the ‘best’ diagnostic

hypothesis for a given set of data and findings. Several studies in the past have shown that

computerized systems are more useful and better accepted if the users receive support for

their own diagnostic thinking styles and if they can structure the vast amount of their

knowledge in representations that help them to understand complex connections and

potential needs for refinement. The issue is then to assist the physician in the differential

diagnostic process and to allow a smooth transition from ‘established’ medical knowledge

to personal judgment and experience. This support can be achieved by relying on relatively

simple, modifiable associations which indicate possible medical causes (diseases, syn-

dromes) that may explain the patient’s current data. With the help of a consultation system,

these small knowledge components can be maintained and feasible connections to other

knowledge components can be found, used, or ‘debugged’ in the context of real patient

data.

In addition, a consultation system should not stop with a list of feasible conclusions, but

should propose further examinations and tests that may help to confirm or exclude some of

the hypotheses. It should also indicate pathological findings which are not yet accounted

for. After reviewing the system’s recommendations and explanations, clinicians can

interactively refine their hypotheses until they reach acceptable decisions. In order to

be accepted in a clinical context, not only the ‘best’ or ‘common’ hypotheses ought to be

presented—it might be more realistic and beneficial to also emphasize rare or uncommon

explanations which might otherwise be overlooked.

When these requirements are reviewed, it becomes clear that only a highly intercon-

nected, dynamic network of medical entities can achieve such demanding tasks. It is

impossible to fine-tune such a network to optimize its performance or to enforce its logical

correctness. In contrast, the representational framework has to be expressive and flexible

enough to account for all the possible connections along with easy means to express the

inherent vagueness and the complexity of the many interconnections. Fuzzy representa-

tions implement this flexibility while still allowing for efficient and adaptive computations.
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From a technical perspective, MedFrame/CADIAG-IV extends previous implementa-

tions in many ways. For example, it marks the transition from a system on a centralized

host with a terminal-based interface and proprietary data representation schemes to a web-

based, client–server solution with graphical user interfaces, object-oriented data models,

and compatibility with many established standards. Further details about MedFrame/

CADIAG-IV’s design rationale, knowledge representation framework, knowledge-based

implementation, and inference processes can be found in [15]. The conceptual models and

the implementation details of MedFrame/CADIAG-IV’s knowledge acquisition system

and the Knowledge Base Builder Toolkit (which is described later) are described in [7].

In order to preserve the successful inference characteristics and large, specialized patient

databases of predecessor systems, full backward compatibility was a special design

requirement. Although MedFrame/CADIAG-IV is a completely new implementation that

preserves the general mode of operation from CADIAG-II—with major changes at the

levels of design, formalisms, representation, computations, and implementation—the most

profound and most visible changes have been introduced to ease acquisition and main-

tainability of medical knowledge. Former versions required deep insights into the

representational details of the system to be able to specify complex knowledge correctly.

Detailed task and resource analyses of the knowledge acquisition and elicitation processes

of previous users led to a specification of a simpler and yet more flexible acquisition

process.

2. Basic concepts of fuzzy knowledge representation

One of the main formal characteristics of MedFrame/CADIAG-IV is the use of fuzzy set

theory and fuzzy logic. Therefore, we introduce the concepts and notations of fuzzy set

theory as used throughout this article.

2.1. Fuzzy sets

In medical science, it is rarely possible to give exact definitions or descriptions of

medical concepts and relationships between concepts. For example, the assignment of

laboratory test results to normal or pathological ranges is arbitrary in borderline cases and

depends on the subjective estimation of the physician. Furthermore, precise descriptions of

relationships between findings and diseases can rarely be given [2].

To express vagueness and imprecision of medical entities and relationships we employ

the theory of fuzzy sets [28]. If U is any set, A is a fuzzy subset of U if there is a function mA

(called membership function) such that

mA : U ! ½0; 1�; (1)

A ¼ fðx; mAðxÞÞjx 2 Ug: (2)

A is a fuzzy set if there is a U such that A is a fuzzy subset of U. The set U is referred to as

the base set or the universe of discourse. The membership function is a generalization of the

characteristic function of ordinary sets, fuzzy sets thus being generalizations of ordinary
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sets. An element of a fuzzy set is specified by a pair A(u)/u, where A(u) is the degree of

membership of that element with that set. Finite fuzzy sets can thus be specified by the

listing of such pairs {1/u1, 0.8/u2, 0.3/u3; . . .}. In addition, in CADIAG-II and MedFrame/

CADIAG-IV elements of fuzzy sets can be specified as n (‘unknown’) so that the member-

ship function specifying a fuzzy set A of a set U is defined as A : U ! ½0; 1� [ n. The

fuzzy power set of U, denoted by FðUÞ, is defined as the set of all fuzzy sets of the

set U.

2.2. Type-2 fuzzy sets

A type-2 fuzzy set ~A of a set U is a fuzzy set whose degrees of membership are

themselves fuzzy sets. This definition extends the original concept of a type-2 fuzzy set as

given in [11], as this fuzzy set is not restricted to [0, 1] here. ~A is defined by ~A : U !FðVÞ,
where FðVÞ is the fuzzy power set of an ordinary set V.

2.3. Fuzzy relations

A fuzzy relation R between a set U and a set V is a fuzzy set of the Cartesian product

U 
 V (U 
 V is the set of all ordered pairs (u; v), u 2 U, v 2 V). The membership

function R : U 
 V ! ½0; 1� assigns to every pair (u; v) a degree of membership.

As an illustration, if U¼ {fever, dyspnea} and V¼ {pulmonary embolism, pneumonia}

then a fuzzy relation of ‘association’ of members of U and V might be expressed as

‘association’¼ {0.1/(fever, pulmonary embolism), 0.95/(fever, pneumonia), 0.9/(dyspnea,

pulmonary embolism), 0.8/(dyspnea/pneumonia)}.

In analogy to the definition of type-2 fuzzy sets, a type-2 fuzzy relation ~R between a set U

and a set V is a fuzzy set of Cartesian product U 
 V , where the membership function
~R : U 
 V !FðWÞ assigns to every pair (u; v) a fuzzy set of the set W.

2.4. Linguistic variables

Zadeh introduced the concept of linguistic variables—variables whose values are

linguistic terms rather than numerical values—to provide a means of approximate

characterization of phenomena that are too complex or too ill-defined to be amenable

to a description in conventional quantitative terms [29]. In medical diagnosis, which is

strongly influenced by human perception and judgment, in many cases it is more

appropriate to describe the underlying knowledge by means of linguistic variables than

by quantitative descriptions.

A linguistic variable is characterized by the quintuple hX, T(X), U, G, Mi in which: (a) X

is the name of the variable; (b) T(X) is the term set of X, that is, the set of its linguistic

values; (c) U a universe of discourse; (d) G a syntactic rule that generates the terms T(X);

and (e) M a semantic rule which associates with each linguistic value x its meaning, M(x),

where M(x) denotes a fuzzy set of U. The syntactic rule G specifies the manner in which the

linguistic values of T(X) are generated. The meaning of a linguistic value x is characterized

by a compatibility function, C : U ! ½0; 1�, which associates with each u in U its

compatibility with x.
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As an example, the linguistic variable ‘diastolic blood pressure’ can be defined as X ¼
‘diastolic blood pressure’, with T(X) ¼ {very low, low, normal, high, very high}, and

U ¼ ½5; 17� kPa. The linguistic value ‘normal’ is represented by a compatibility (member-

ship) function as depicted in Fig. 1.

3. Fuzzy knowledge representation in MedFrame/CADIAG-IV

An overall description of the knowledge representation formalism of MedFrame/

CADIAG-IV can be found in detail in [15]. The following section gives a short introduction

and a brief summary of the knowledge representation framework as necessary for

understanding the knowledge acquisition tasks.

3.1. Representation of medical concepts

For all inferencing tasks, some kind of ‘knowledge’ is usually available to deal with the

challenge of arriving at useful conclusions even though the task is usually ill-defined. In

MedFrame/CADIAG-IV, the medical concept type represents the top-most abstraction

level of medical knowledge items. The most important characteristic of a medical concept

is that it is uniquely defined by a set of facets, that are based on SNOMED international

module concepts [22], and a variable number of qualifiers. Thus, all entities can be defined

and identified in a stringent, coherent, and semantically meaningful way.

Semantically, we distinguish between two subtypes of medical concepts which are the

basic knowledge types within the knowledge representation framework.

3.1.1. Medical entities

Findings, diseases, and therapies are the basic building blocks for all possible statements

about medical concepts. The definition of such knowledge constitutes the granularity of the

system (i.e. the most atomic ingredients that can be reasoned about) and follows other

approaches in the medical knowledge-based systems field.

Fig. 1. The meaning of the linguistic term is characterized by a compatibility function which associates to

every possible diastolic blood pressure a degree of compatibility with the concept ‘normal diastolic blood

pressure’.
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3.1.2. Medical data

At another level than qualitative medical entities, medical data describe quantitative

medical concepts such as measurements, results from physical examinations, and labora-

tory data (e.g. height, duration of morning stiffness, serum glucose levels).

The sets of findings F, diseases D, therapies T, the set of medical entities E

(E ¼ F [ D [ T), and the set of patients P are ordinary sets. When considering a single

patient, the vagueness and imprecision of medical entities is taken into account by

introducing fuzzy sets: (a) Fþ (specified by Fþ : F ! ½0; 1�) denoting the patient’s

findings; (b) Dþ (Dþ : D! ½0; 1�) denoting the patient’s diseases; and (c) Tþ

(Tþ : T ! ½0; 1�) denoting the therapies administered to the patient (which may also be

fuzzy as for example in the case of a prescribed ‘mild low-fat diet’).

An example of this can be given by considering the set of findings F as defined in

MedFrame/CADIAG-IV and the fuzzy set Fþ representing the findings of a single patient

Fþ ¼ f1:0=f5 ¼ ‘hyperuricemia’, 0:7=f31 ¼ ‘swelling of the ankle joint’, n=f72 ¼ ‘family

history of gout’, . . .}.

3.2. Data-to-entity conversion

As stated above, the fuzzy set Fþ denotes a single patient’s findings and represents the

respective medical concepts on a symbolic level. Since MedFrame/CADIAG-IV reasoning

mechanisms operate at the level of symbolic concepts a data-to-entity conversion has to be

employed to transform numeric medical data (e.g. body temperature: 39 8C) into symbolic

concepts (e.g. ‘body temperature normal’, ‘body temperature raised’) (Fig. 2). For this

purpose we define a linguistic variable that denotes the observed medical data. The term set

of this linguistic variable represents the interpretation categories of the respective medical

Fig. 2. Different types of medical concepts in MedFrame/CADIAG-IV. Quantitative medical data are converted

into symbolic representations in a data-to-entity conversion step.
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data or, in other words, the set of symbolic concepts (medical entities) a medical data

can be converted into. The universe of discourse U is defined by the range of possible

values of the medical data. The compatibility functions characterize the interpretation

categories and assign to every value u 2 U of a medical data a degree of membership of

u in the interpretation categories. At run-time, when actual patient data are used, these

definitions will translate data values and assessments into symbolic, but fuzzified medical

entities.

The interpretation of medical data in a clinical setting is not always straightforward.

Whether or not a laboratory value is considered to be ‘normal’ might depend on the values

of other measurements. Especially for patho-physiologically interdependent data (e.g.

‘hematocrit level’ and ‘serum erythropoietin level’) the interpretation is a multi-dimen-

sional problem. Formally, these combinations require the use of type-2 fuzzy sets. In the

case of two-dimensional problems, a practical solution to acquire the membership

functions is to define data-to-entity conversions for discrete values of the second dimension

and to compute the full fuzzy membership function through interpolations (for details see

[8,17]).

A special variation of multi-dimensional data is the interpretation of fuzzy temporal

trends, where time is considered to be a special kind of medical data. In many medical

assessments, not only the absolute value of a medical parameter is important, but also the

variation and course of the value over time (e.g. blood glucose tolerance tests). The

computation of a temporal course, however, requires the computation of several compat-

ibility functions over a period of time [24,25].

In many situations, the interpretation of actual patient data is only reasonable in special

circumstances. MedFrame/CADIAG-IV allows the specification of fuzzy contexts that are

used to qualify specific interpretations. For example, many medical entities and especially

quantitative medical data give rise to different interpretation depending on age, sex, or

special conditions such as pregnancy or preexisting diseases. Contexts can now be defined

for all parameters individually. This freedom allows the medical expert to define different

membership functions for different interpretations (e.g. given the context of pregnancy, low

glucose levels may have other membership functions than in case of absence of gravidity).

The selection of appropriate contexts and the computation of compatibility function for the

selected context(s) are described in more detail in [8].

It has become a standard requirement of knowledge representations that they are

transparent and meaningful to the people maintaining them. By separating out most of

the difficult data-related decisions (e.g. ‘does a temperature of 37.18 imply fever?’) even at

the more complex levels of multi-dimensional, time-dependent, or context-dependent

interpretation, MedFrame/CADIAG-IV allows the decision maker to concentrate on the

inferential reasoning process, knowing that appropriate attention is given to all possible

interpretations of actual patient data.

3.3. Representation of relationships between medical concepts

At the core of MedFrame/CADIAG-IV’s inference processes are reasoning mechanisms

that deal with symbolic entities. These entities are connected by means of fuzzy rules. The

basic inference process follows these relationships and recursively calculates fuzzy values
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for connected entities. As already stated above, this type of rules employs an implication

operator that demands symbolic concepts as antecedents and consequents. In general, we

distinguish rules that denote positive associations between antecedents and consequents

from rules that denote negative associations (a similar approach has been proposed in

[12,13,23]). Both are characterized by a pair of fuzzy sets which in the case of a positive

association are denoted as Fp the ‘frequency of occurrence of the antecedent with the

consequent’ and Sp the ‘strength of confirmation of the antecedent for the consequent’, and

in the case of a negative association as Fn ‘frequency of occurrence of the antecedent with

not the consequent’ and Sn the ‘strength of exclusion of the antecedent for the consequent’

(Table 1). These fuzzy sets represent and qualify the vagueness and uncertainty of the

relationships and are interpreted as fuzzy numbers. Actually, they are fuzzy numbers of

the set U ¼ ½0; 1� (this definition slightly extends the definition as given in [11]). For the

definition of their characterizing membership functions we use the function Pðx; a; b; g; dÞ
for linear transition functions and Pðx; a; b; g; dÞ for non-linear transition functions

(a graphical representation of P is depicted in Fig. 3, examples of the non-linear type

P are shown in Fig. 8).

Pðx; a; b; g; dÞ ¼

0 x < a;
x� a
b� a

a � x < b ^ a < b;

1 b � x � g;

1� x� g
d� g

g < x � d ^ g < d;

0 x > d:

8>>>>>>>><
>>>>>>>>:

Table 1

The four types of relationships between antecedents and consequents

Positive association A 
Fp

C Frequency of occurrence of the antecedent with the consequent

A!
Sp

C Strength of confirmation of the antecedent for the consequent

Negative association A Fn:C Frequency of occurrence of the antecedent with not the consequent

A!Sn :C Strength of exclusion of the antecedent for the consequent

The type of association determines the pair of applicable fuzzy relationships.

Fig. 3. Graphical representation of function P.
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Pðx; a; b; g; dÞ ¼

0 x < a;

2
x� a
b� a

� �2

a � x � b� a
2

^ a < b;

1� 2
b� x

b� a

� �2 b� a
2

< x < b ^ a < b;

1 b � x � g;

1� 2
x� d
d� g

� �2

g < x � d� g
2

^ g < d;

2
d� x

d� g

� �2 d� g
2

< x � d ^ g < d;

0 x > d:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

The overall rule base of MedFrame/CADIAG-IV, that is the total set of rules in

the knowledge base, can be represented by two pairs of type-2 fuzzy relations which

describe the relationships between the tuples hei, eji of medical entities (ei, ej 2 E). For

positive associations, this pair consists of the type-2 fuzzy relations ~R
p

F ‘frequencies of

occurrence of the antecedents with the consequents’

~R
p

F : E 
 E!Fð½0; 1�Þ;

and ~R
p

F ‘strengths of confirmation of the antecedent for the consequent’

~R
p

S : E 
 E!Fð½0; 1�Þ:

For negative associations, this pair consists of the type-2 fuzzy relations ~R
n

F ‘frequencies

of occurrence of the antecedents with not the consequents’

~R
n

F : E 
 E!Fð½0; 1�Þ;
and the ~R

n

S ‘strengths of exclusion of the antecedent for the consequent’

~R
n

S : E 
 E!Fð½0; 1�Þ:
The antecedents of rules are not restricted to single medical concepts but may be logical

combinations of medical concepts and operators forming an operator tree. Two special

knowledge representations, disease profiles and explicit rules, combine several medical

entities in more complex ways. Disease profiles are intermediate representations that are

approximations of the experts’ mental models of diseases. They combine, in a table-like

manner, all the defined medical entities (e.g. symptoms, physical signs, lab test results,

clinical findings, examinations, syndromes, diseases, therapies) that are related to another

entity (usually a disease or diagnostic hypothesis).

The most common and most descriptive use of fuzzy relationships is the connection of

findings with diseases, but the same relationships can be used for any number and types of

medical entities. Thus, medical entities that act as findings in a disease profile can

themselves be complex fuzzy concepts that are composed of many combinations of other

‘disease profiles’. The sum of all these fuzzy relationships constitute a network of linked

concepts that defines the knowledge base, which is used by the inference processes. It is
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worthwhile mentioning that these disease profiles are not explicitly represented in

MedFrame/CADIAG-IV’s data model-they are intermediate representations of a concept

that many physicians seem to be comfortable with and are generated from the ‘normal’

fuzzy relationships discussed above.

4. Acquisition of inferential knowledge

Given the complexity of the network of entities that is to be acquired and given the

difficulty in assessing even a simple one-to-one relationship between a finding and a

disease, a guided, stepwise knowledge-acquisition process has been established. Knowl-

edge acquisition starts with the definition of medical concepts. The definition of medical

data, which are a special subtype of medical concepts, additionally requires the definition

of data-to-entity conversion rules to allow a processing of the represented information in

the inference process. For this purpose, linguistic variables and adequate interpretation

categories must be specified. Subsequently, the connection between medical entities can be

established by fuzzy relationships.

4.1. Definition of the data-to-entity conversion rules

As stated above, the data-to-entity conversion mechanism transforms a patient’s raw

(numerical) medical data into symbolic concepts (medical entities). This step may be

compared to a physician’s assessment and interpretation of measured patient data. The

definition of the medical entities that can be derived from medical data and the definition of

the conversion rules require medical knowledge and are therefore a crucial part of the

knowledge acquisition process.

When a medical datum is created, the knowledge acquisition tool formally employs

a corresponding linguistic variable and asks for the total range of possible values of

the medical datum. This range of possible values forms the universe of discourse U of the

linguistic variable. Subsequently, the term set (interpretation categories) and the respective

compatibility functions must be defined in three steps.

In a first step, an appropriate number of interpretation categories has to be chosen. In the

example depicted in Fig. 4, three interpretation categories (‘pathologic’, ‘suspect’ and

‘normal’) were defined representing the findings ‘pathologic chymotrypsin level in stool’,

‘suspect chymotrypsin level in stool’ and ‘normal chymotrypsin level in stool’. The more

categories are established the more decisions and maintenance efforts are required to make

them useful and the higher is the discriminative expressiveness.

In a second step, the selected interpretation categories can be defined as either exclusive

or inclusive categories (Fig. 5). Exclusive (or complementary) categories are used when

some medical data point could be used to differentiate between possible interpretations

(e.g. the categorization of the ‘total serum bilirubin level’ can be useful to differentiate

between hyperbilirubinemia caused by hemolysis, hepatitis or cholestasis). Inclusive

categories are more useful when some data points imply gradual changes (e.g. both

‘increased’ and ‘heavily increased’ serum glucose levels are signs of diabetes, but they also

allow for an improved diagnosis of the type and stage of diabetes).
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Fig. 4. The term set of the linguistic variable ‘chymotrypsin level in stool’ and the specification of the

compatibility functions.

Fig. 5. Exclusive vs. inclusive interpretation categories for medical data.
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As a last step, the compatibility functions characterizing the interpretation categories

need to be defined. For a given medical data (x-axis) the degree of compatibility (y-axis) to

the interpretation categories is assessed. A compatibility degree of ‘1’ denotes the range of

data values for which an interpretation is always correct (in the case of exclusive categories

it is also the only correct interpretation). The values of medical data to which no

interpretation category are assigned as completely compatible (‘1’) describe the vagueness

of the medical entities. These borderline values may be partially compatible with usually

two adjacent medical interpretation categories.

Different fuzzy membership functions can be used to model the desired fuzziness

characteristics outside of full compatibility. As a default, linear transition functions

between two categories are proposed. The data-to-entity conversion process is completed

when the whole defined range of possible data values is covered. It is, however, possible to

just define parameter ranges that are ‘pathologic’ with respect to a certain class of diseases.

Partly, the medical knowledge that is necessary for the definition of the interpretation

categories and the specification of the characterizing compatibility functions may be

obtained from text books, reference tables, and patient databases, but in many cases

depends—due to a lack of strict medical guidelines—on the subjective judgment of the

medical expert.

The interpretation of medical data that are patho-physiologically interdependent and of

data over time requires a type-2 fuzzy set representation of the interpretation categories.

Accordingly, an interpretation category is characterized by a compatibility function

C : U !FðVÞ. A practical solution to acquire the compatibility function is to define

the fuzzy sets Vi : V ! ½0; 1� for a selected set �U ¼ fu1; . . . ; ung of discrete values

ui 2 U; i 2 N, and define the compatibility function as C : �UFðVÞ. If the set �U is chosen

adequately (i.e. u1 ¼ min U, un ¼ max U, the granularity being fine enough) the compat-

ibility function can be approximated for the whole range of u 2 U by linear interpolation.

In the case of two interdependent medical data, the compatibility function assigns to the

pair (u; v) of a medical datum u 2 U and a medical datum v 2 V the degree of compatibility

with the interpretation category it specifies. In the case of temporal medical data, the

compatibility function assigns to a temporal course u(t) of a medical datum u 2 U (t 2 TI

denotes time) the degree of compatibility to a set of predefined temporal courses (which are

special kinds of interpretation categories). Here, the fuzzy sets Ui : U ! ½0; 1� are defined

at distinct time stamps ti 2 TI, i 2 N. As an illustration, the compatibility function of the

fuzzy temporal trend ‘normal glucose tolerance test’ is depicted in Fig. 6. During

knowledge acquisition, the user can select from a predefined set of fuzzy time-trends

(e.g. constant, rising, falling, oscillating) with special parameters (onset-time, onset-value,

direction) which cover many typical situations.

As already mentioned, compatibility functions employed in the data-to-entity conver-

sion may also be defined in a context-dependent manner. In terms of the knowledge

acquisition process, a default context, which is used whenever no specialized context is

applicable, is always defined in a first step. Subsequently, a number of appropriate fuzzy

contexts can be defined (or reused). For example, many medical entities and especially

quantitative medical data give rise to different interpretation depending on age, sex, or

special conditions such as pregnancy or preexisting diseases. Contexts can now be defined

for all parameters individually. This freedom allows the medical expert to define different
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membership functions for different interpretations (e.g. given the context of pregnancy,

normal glucose levels have different membership functions). The selection of appropriate

contexts and the computation of compatibility function for the selected context(s) are

described in more detail in [8].

4.2. Stepwise refinement of fuzzy medical relationships

The definition of the fuzzy relationships between medical entities is guided by a

stepwise knowledge acquisition process. In a few steps, the connection between two

entities can be established by medical experts starting from a simple association and ending

up with fuzzy membership functions. These steps are optional refinements that are

supported by a dedicated knowledge acquisition methodology. If an expert has acquired

some familiarity with all the available forms of knowledge representation, direct inter-

action with the appropriate step is possible without a need to go through all previous steps.

Although the interpretations in steps 1 and 2 could be represented using traditional logical

formulas, they are also defined as fuzzy membership functions. Formally, all relationships

express some degree of vagueness and uncertainty and are thus interpreted as fuzzy

numbers. Medical entities are unrelated to each other unless an expert adds some

knowledge about a specific relationship in the following steps.

Fig. 6. Type-2 fuzzy set representation of the trend ‘normal glucose tolerance test’. The degree of compatibility

of a temporal course with the trend is calculated by assessing the degrees of compatibility to the temporal course

at the distinct time stamps.
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4.3. Step 1: associations

To add knowledge about the relationship between two medical entities, a first step may

consist in defining either a positive, a neutral, or a negative association between them.

These associations are appropriate whenever causal relationships or at least empirical

correlations are accepted as scientific facts. For example, a positive relationship between a

finding and a disease implies that medical knowledge is available to always infer (confirm)

the presence of a disease whenever the finding is present. To exclude the disease whenever

the finding is present, a negative association would have been used. A neutral association

adds knowledge that some kind of non-causal relationship exists, which could be a

descriptive relationship between a patient’s characteristic such as age, sex, or race and

a certain disease.

Because positive or negative evidence is hard to find, many neutral associations are

likely to appear in medical domains to account for experimental and casuistic knowledge.

Formally, a positive association is represented by the fuzzy sets Fp and Sp and

characterized by membership functions

FpðuÞ ¼
1 u 6¼ 0;
0 u ¼ 0;

�

and

SpðuÞ ¼
1 u 6¼ 0;
0 u ¼ 0:

�

A negative association is specified by

FnðuÞ ¼
1 u 6¼ 0;
0 u ¼ 0:

�

and

SnðuÞ ¼
1 u 6¼ 0;
0 u ¼ 0:

�

By definition, a neutral association does not have a strength of confirmation or strength

of exclusion and is therefore represented by Fp only

FpðuÞ ¼
1 u 6¼ 0;
0 u ¼ 0:

�

As an example, the association between the finding ‘increased serum glucose level’ and the

disease ‘diabetes’ is positive and accordingly specified as depicted in (Fig. 7).

Associations can be refined in the following steps to diminish the uncertainty or lack of

established causal knowledge.

4.4. Step 2: predefined CADIAG relations

The basic relationship concepts of CADIAG-I and CADIAG-II, which were useful for

acquiring medical knowledge from domain experts as well as for successful application of
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the fuzzy reasoning system, are ‘frequency of occurrence’ and ‘strength of confirmation’

[6]. They are used to differentiate positive and negative associations into several basic

relationships (MedFrame/CADIAG-IV extends CADIAG-II by introducing explicit cal-

culation of all combinations of negative evidence). These relations allow the expert to

capture special kinds of relationships more easily (Table 2). Examples of these are given in

Table 3.

Any relation is directed from an antecedent A to a consequent D (usually from a

symptom, physical sign, lab test result, or finding to a disease) and characterized by the

frequency of occurrence Fp and the strength of confirmation Sp. In a simple case, these

Fig. 7. Illustration of the stepwise refinement process of the relationship between two medical entities

(‘increased serum glucose level’ and ‘diabetes’). Full/empty circles denote full/no membership.
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Table 2

The nine predefined CADIAG relations and their fuzzy-based representation

CADIAG relation Fp Sp Fn Sn

OC Obligatorily

occurring and

confirming

– –

nOC Not obligatorily

occurring and

confirming

– –

OnC Obligatorily

occurring and

not confirming

– –

nOnC Not obligatorily

occurring and

not confirming

– –

N Neutral – – –

nOnE Not obligatorily

occurring with

not the consequent

and not excluding

– –

OnE Obligatorily

occurring with not

the consequent

and not excluding

– –

nOE Not obligatorily

occurring with

not the consequent

and excluding

– –

OE Obligatorily

occurring with

not the consequent

and excluding

– –
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parameters can be crisp judgments (e.g. obligatorily present and confirming, OC) which

could be used like standard (predicate) logical relations. Of course, all logical combina-

tions including negations are possible which results in four different relations (e.g.

obligatorily present and not confirming, OnC).

Additionally, the same relations have to be defined for the absence of the consequent

(negation of D,:D), because a low or zero value of strength of confirmation is semantically

different from an exclusion. Thus, the frequency of occurrence Fn (obligatorily for:D) and

the strength of exclusion Sn (excluding or not) are defined as well.

The special case of a ‘neutral’ relationship has been defined to include only Fp, without

qualifying Sp. In summary, the user has nine possible relations by specifying Fp and Sp, or

Fn and Sn, respectively.

As the finding ‘increased serum glucose level’ is obligatorily occurring with the disease

‘diabetes’butdoesnotconfirmthedisease ‘diabetes’,we use the predefined CADIAGrelation

OnC for the further specification of the relationship. The membership functions are defined as

FpðuÞ ¼
1 u ¼ 0;
0 u 6¼ 0:

�

Table 3

The nine predefined CADIAG relations and case examples

CADIAG relation Case example

OC Obligatorily occurring

and confirming

A failure of detection of galactose-1-phosphate-uridinediphosphate-

galactose-transferase (antecedent) is obligatorily occurring with

galactosaemia (consequent) and confirms galactosaemia by definition

nOC Not obligatorily

occurring and confirming

Intracellular urate cristalls in synovial fluid (antecedent) are not

obligatorily occurring with gout (consequent) but a detection of

intracellular urate cristalls confirms gout by definition

OnC Obligatorily occurring and

not confirming

An increased serum glucose level (antecedent) is obligatorily

occurring with diabetes (consequent) but does not confirm diabetes

nOnC Not obligatorily occurring

and not confirming

Rheumatoid factors (antecedent) are not obligatorily occurring with

rheumatoid arthritis (consequent) and do not confirm rheumatoid

arthritis

N Neutral Gout (consequent) is observed twenty times more frequently in male

patients (antecedent). However, the patient’s sex has no strength of

confirmation for gout and is therefore neutral

nOnE Not obligatorily occurring

with not the consequent

and not excluding

A failure of detection of malignant cells in biopsy material of the

stomach (antecedent) is not excluding gastric cancer (consequent). A

detection of malignant cells in biopsy material of the stomach is not

obligatorily occurring in other malignant diseases

OnE Obligatorily occurring with

not the consequent and

not excluding

Physical well-being (antecedent) does not exclude illness (consequent)

but is obligatorily occurring with health (¼ not illness)

nOE Not obligatorily occurring

with not the consequent

and excluding

A failure of detection of malignant cells in a resected stomach

excludes gastric cancer. A detection of malignant cells in a resected

stomach is not obligatorily occurring in other malignant diseases

OE Obligatorily occurring

with not the consequent

and excluding

Vital signs (antecedent) exlude death (consequent) and are obligatorily

occurring with life (¼ not death)
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and

SpðuÞ ¼
0 u ¼ 1;
1 u 6¼ 0 ^ u 6¼ 1;
0 u ¼ 0:

8<
:

So far, evidence and counter-evidence for a medical entity are represented to be either

‘present’ or ‘absent’ given some other medical entity. In order to qualify the degree of

relationship, fuzzy memberships are used.

4.5. Step 3: fuzzy membership definition by linguistic terms

It is certainly possible to adopt frequentistic or probabilistic interpretations of the

relationships Fp, Sp, Fn, and Sn, and in fact, many experts use just that kind of knowledge to

‘fuzzify’ their relationships. The knowledge acquisition framework therefore supports

another approach to deal with uncertainty and vagueness by providing a set of linguistic

terms to define the membership functions Fp, Sp, Fn and Sn. The term sets of the linguistic

variables characterize the gradation of the strengths of the relationships. We offer a set of

seven predefined linguistic terms for the definition of Fp and Fn, or Sp and Sn, respectively

(characterized by the compatibility functions defined in Tables 4 and 5, Figs. 8 and 9,

respectively).

Table 4

Linguistic terms used for the definition of Fp and Fn

Linguistic terms Compatibility functions

Almost always MðxÞ ¼ Pðx; 0:88; 0:94; 1:00; 1:00Þ
Very often MðxÞ ¼ Pðx; 0:75; 0:88; 1:00; 1:00Þ
Often MðxÞ ¼ Pðx; 0:50; 0:75; 1:00; 1:00Þ
Medium MðxÞ ¼ Pðx; 0:25; 0:50; 0:50; 0:75Þ
Seldom MðxÞ ¼ Pðx; 0:00; 0:00; 0:25; 0:50Þ
Very seldom MðxÞ ¼ Pðx; 0:00; 0:00; 0:13; 0:25Þ
Almost never MðxÞ ¼ Pðx; 0:00; 0:00; 0:06; 0:13Þ

Table 5

Linguistic terms used for the definition of Sp and Sn

Linguistic terms Compatibility functions

Almost definitely MðxÞ ¼ Pðx; 0:88; 0:94; 1:00; 1:00Þ
Very strong MðxÞ ¼ Pðx; 0:75; 0:88; 1:00; 1:00Þ
Strong MðxÞ ¼ Pðx; 0:50; 0:75; 1:00; 1:00Þ
Medium MðxÞ ¼ Pðx; 0:25; 0:50; 0:50; 0:75Þ
Weak MðxÞ ¼ Pðx; 0:00; 0:00; 0:25; 0:50Þ
Very weak MðxÞ ¼ Pðx; 0:00; 0:00; 0:13; 0:25Þ
Almost no MðxÞ ¼ Pðx; 0:00; 0:00; 0:06; 0:13Þ
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In our example, we use the linguistic term ‘strong’ for the definition of the Sp. Fp has

already been defined as obligatorily occurring in the previous step. The membership

functions are defined as

FpðuÞ ¼
1 u ¼ 1;
0 u 6¼ 1;

�

and

SpðuÞ ¼ Pðu; 0:5; 0:75; 1; 1Þ:

4.6. Step 4: manipulating membership functions

Alternatively, or as a further refinement to the use of linguistic terms, the fuzzy

membership functions of Sp and Fp, or Sn and Fn respectively, can be manipulated directly.

Doing so it is possible to either define: (a) fuzzy intervals; (b) fuzzy values; or (c) crisp

values (which are all subtypes of fuzzy numbers).

As an example, the expert may wish to define the strength of confirmation of an

‘increased serum glucose level’ for ‘diabetes’ as being somewhere in the fuzzy interval

[0.45, 0.85] and, therefore, an interval representation is chosen

FpðuÞ ¼
1 u ¼ 1;
0 u 6¼ 1;

�

Fig. 8. Compatibility functions of the linguistic frequency of occurrence with D and frequency of occurrence

with :D variables.

Fig. 9. Compatibility functions of the linguistic strength of confirmation and strength of exclusion variables.
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and

SpðuÞ ¼ Pðu; 0:45; 0:55; 0:75; 0:85Þ:

If the expert is more confident of his judgment, Sp might be defined as being approximately

0.65 and the corresponding membership functions as

FpðuÞ ¼
1 u ¼ 1;
0 u 6¼ 1;

�

and

SpðuÞ ¼ Pðu; 0:55; 0:65; 0:65; 0:75Þ:

Finally, if the exact values of the strengths of the relationships can be given they can be

specified by crisp values which here can be seen as a special case of a fuzzy number.

Accordingly, Sp can be characterized by a fuzzy membership function

FpðuÞ ¼
1 u ¼ 1;
0 u 6¼ 1;

�

and

SpðuÞ ¼
1 u ¼ 0:65;
0 u 6¼ 0:65:

�

Formally, even these values remain defined as fuzzy values.

4.7. Semiautomatic calculation of fuzzy relationships

The difficulty to judge and assess fuzzy compatibility functions, even if supported by a

stepwise refinement procedure as outlined above, calls for additional support. Medical

inferences are often guided by further knowledge from base rates and probabilities (e.g.

incidence and prevalence) which are scientifically established for various types of patient

populations and medical conditions.

Furthermore, in-depth knowledge of the local patient population, well-researched

patient samples or hypothetical cases can be used during knowledge acquisition to serve

as ‘gold standards’ or at least as robustness indicators to evaluate changes in the knowledge

base.

We therefore offer a technique that allows a semiautomatic acquisition of fuzzy

relationships [3]. The medical knowledge acquired by using this technique is statistical

in nature and may, in some cases, differ from the judgmental knowledge of an expert. Thus,

we refer to it as a semiautomatic knowledge acquisition technique assuming that the

experts critically review the achieved results.

The semiautomatic knowledge acquisition technique is based on the calculation of

frequencies of co-occurrence of medical concepts in a patient data base. With respect to the

different types of knowledge representation, we distinguish between two different com-

putational models. If patient data is stored in a conventional database the vagueness and

fuzziness of medical concepts is not taken into account and a medical concept is either
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present in the patient’s medical record or not. If, on the contrary, data are obtained from a

fuzzy database (as the MedFrame/CADIAG-IV database), medical concepts may not only

be present or absent, but also be present to a certain degree. In that case, the calculation is

performed by using Sigma-Counts [5].

The proposed semiautomatic knowledge acquisition technique was first tested in

CADIAG-II [3]. For this purpose, a set of batch programs that were implemented on

an IBM 4341 model 2 were applied on large patient databases within the hospital

information system of the Vienna General Hospital. As the knowledge representation

formalism of CADIAG-II has been extended in MedFrame/CADIAG-IV we had to adapt

the computational model.

5. The Knowledge Base Builder Toolkit

We have developed a prototype of a knowledge acquisition software, the Knowledge

Base Builder Toolkit, that adopts the conceptual knowledge acquisition model as described

above. The software has been programmed in the Java programming language (using JDK

1.1) and was designed as an Internet-based client in the MedFrame/CADIAG-IV client–

server environment (Fig. 10).

The Knowledge Base Builder Toolkit has been implemented to allow a user-centered

acquisition of knowledge and to make easier and more accessible the three main knowl-

edge acquisition tasks of: (a) defining medical concepts; (b) providing appropriate

interpretations for patient data; and (c) constructing inferential knowledge.

For this purpose, the Knowledge Base Builder Toolkit comprises of a Thesaurus that

facilitates the definition, administration, and retrieval of all instances of medical concepts

and thus supports the building of the definitional hierarchy of the controlled MedFrame/

CADIAG-IV vocabulary.

A Data-to-Entity Conversion Rule Builder supports the process of defining the

conversion rules with several assistants and a Rule Builder Assistant facilitates the

definition, syntax checking, and maintenance of rules which usually are composed of

user-defined medical entities and a system-defined set of operands (e.g. Boolean and fuzzy

operators).

The stepwise refinement of fuzzy medical relationships is supported by a corres-

ponding sequence of dialogs. If an expert has acquired some familiarity with all the

available features, direct interaction with the appropriate step is possible without a

need to go through all previous steps. In the user interface, textual definitions (i.e.

function type, values, bounds, and ranges) as well as the corresponding graphical

representations (i.e. the membership functions) can be manipulated to define or adapt

fuzzy members.

Finally, a Profile Editor allows the domain expert to build disease profiles and to

immediately see the consequences of any changes with respect to a predefined case base.

The Profile Editor employs a spreadsheet metaphor to allow an intuitive performance of

this task. A new disease profile may either be established from scratch or be based upon one

of two predefined knowledge resources, either another already defined disease profile, or a

complete knowledge base module.
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Fig. 10. Case example illustrating the definition of context-dependent data-to-entity rules using the Knowledge Base Builder Toolkit.
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6. Discussion

It is premature to evaluate the Knowledge Base Builder Toolkit software because the

crucial test—successful everyday use in a clinical setting—has not yet been performed.

However, early experiences with the porting of one of the CADIAG-II knowledge bases

(rheumatology) and with the construction of several new knowledge bases are promising.

The most ambitious project so far has been the construction of a hepatologic knowledge

base, that comprises 120 different liver diseases and more than 900 findings, lab tests and

clinical findings. It turned out that the modified knowledge representations and acquisition

procedures were manageable and did not confuse experts or knowledge engineers once

they were accustomed to the basic concepts. However, given the fact that reasoning with

negative evidence is not easily understood even at the formal (logical, mathematical,

philosophical) level, it should come as no surprise that difficulties in using the full

spectrum for negative evidence representations have been reported. A second application

has been skeletal radiology with special emphasis on radiological manifestations of

rheumatologic diseases [14].

The balance between providing more flexibility and trying to reduce judgmental efforts

seems still difficult to maintain. While our framework tries to minimize complexity with

predefined acquisition steps and supportive tools, it remains difficult to assess the impact of

decisions on the rest of the system. Additional features in our model, such as the ability to

classify and constrain knowledge pieces to particular uses may alleviate ‘collision’ effects.

For example, most definitions are restricted to a single medical subfield or confined to users

of a particular hospital department where local standards may overrule generally accepted

knowledge. However, already relatively simple cases of multi-criteria decision making

(e.g. patho-physiologically interacting entities, time-dependent entities, disease profiles)

are difficult to define.

By introducing intuitive methods for a stepwise definition of fuzzy medical entities and

fuzzy relationships we allow the medical experts to establish medical knowledge bases

with minimum additional support from a knowledge engineer. Results gained with the

Knowledge Base Builder Toolkit show that an acquisition of domain knowledge can be

achieved and that the process provides now a transparent—and easier to maintain—

interface to the knowledge base. However, the construction of useful medical knowledge

bases remains a time-consuming and demanding task. The methods and tools provided in

our system are designed to make the knowledge acquisition task easier, but they still

require familiarity of the domain experts with the methodology as described above.

However, the explicit definition of the required steps and the transparent supporting

representations and computer interfaces certainly enhance the cooperation and mutual

understanding between experts and knowledge engineers.

Recently knowledge acquisition from very large databases, including medical databases

and DNA sequence databases, called ‘rule extraction’ or ‘rule generation’ has been

attracting much interest in the artificial intelligence and artificial neural network com-

munity [19]. Very recently, d’Avila Garcez et al. have published an approach to symbolic

knowledge acquisition by rule extraction [10]. This paper is dealing with a fundamental

knowledge base refinement approach. It is very likely that approaches like these will

substantially ease the knowledge acquisition bottleneck in the future.
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The fuzzy knowledge representation framework of MedFrame/CADIAG-IV allows

medical knowledge acquisition at varying levels of precision and certainty. Thus, the

expert may define relationships between medical entities very vaguely or unambiguously.

The fuzzy inference mechanism of MedFrame/CADIAG-IV is capable of dealing with both

highly precise as well as incomplete, uncertain, and vague knowledge. Thus, even

knowledge that would not have been incorporated into non-fuzzy knowledge-based

systems may contribute to the system’s output.

In summary, the conception and the design of our system reflect the need for a user-

centered, intuitive, and easy-to-handle tool for establishing and maintaining fuzzy medical

knowledge bases. First results with an early prototype have shown that this critical phase of

knowledge-based system development, which is of special importance in the complex

mathematical context of applied fuzzy set theory, can now be passed more easily.
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