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Abstract

As part of a plan to promote semi-automatic knowledge acquisition for the medical consultant

system CADIAG-II/RHEUMA, this study sought to explore and cope with the variability of results

that may be anticipated when performing knowledge acquisition with patient data from different

patient settings. Patient data were drawn both from a published study for the classification of

rheumatoid arthritis (RA) and from a large database of rheumatological patient charts developed for

the CADIAG-II/RHEUMA system. An analysis of the relationships between RA and selected

CADIAG-II/RHEUMA symptoms was done using two models. In one of them, we controlled for the

differences in baseline frequencies of symptoms and diseases in the two study populations as an

important factor influencing the results of the calculations. Other factors that were identified included

inconsistent definitions of symptoms and diseases, and the different composition of study groups in

the two study populations. By eliminating differences in baseline frequencies as the most important

bias, the results obtained from the two different knowledge sources became more consistent. All

remaining inconsistencies and uncertainties about the contribution and relative importance of the

factors were formalized using fuzzy intervals. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Knowledge acquisition (KA) has consistently been described as a bottleneck in the

development of computer consultant systems. Areas of high complexity impose great

demands on domain experts to generate knowledge bases that are both consistent and

complete in the sense that all major aspects of the application domain are correctly

represented in the knowledge base. Automatic KA from databases within the application

domain was proposed early to support traditional manual KA. Knowledge acquired within

such a database, however, will automatically reflect biases and peculiarities of the specific

set of data. In order to generate knowledge that is more consistent among different data

sets, it is important to identify and to control for biasing factors.

As part of a plan to promote semi-automatic KA for the medical consultant system

CADIAG-II/RHEUMA, this study sought to explore and cope with the variability of results

that may be expected during KA with patient data from different patient settings. By

identifying and controlling for major influencing factors, we expected the results obtained

from different patient data sets to become more consistent. Finally, we planned to use fuzzy

techniques to cope with the remaining inconsistencies and uncertainties about the con-

tribution and relative importance of all factors.

The medical consultant system CADIAG-II was developed at the Department of Medical

Computer Sciences, University of Vienna Medical School. The predecessors of CADIAG-II

include a system based on Boolean logic [34], followed by the system CADIAG-I, in which

first-order predicate calculus formulas were used to define relationships between symptoms

and diseases [30]. A new concept for a successor system based on fuzzy set theory to

formalize symptoms and diseases, and on fuzzy logic as the processing mechanism, was

described by Adlassnig in 1980 [1]. The new system, named CADIAG-II, was implemented

in 1982, and was completely incorporated into the medical information system WAMIS in

1984 [7]. It was continuously improved over the following years [2,3,5,6,8].

CADIAG-II itself was the starting point of a series of new approaches to a more

generalized medical consultant system known as MEDFRAME. Current areas of research

and development include a highly structured object-oriented patient data and medical

knowledge base [16,24], a more generalized use of fuzzy set theory in symptom generation

[17], and a broader definition of relationships between medical entities [31].

Symptoms and diseases in CADIAG-II are formalized as fuzzy sets, which are

characterized by fuzzy membership functions [3,36]. Relationships between symptoms

and diseases are characterized by two aspects: (1) the frequency of occurrence degree, (2)

the strength of confirmation degree, both of which also take fuzzy values in the range [0, 1].

Frequency of occurrence degrees of 1 or 0 are assigned to symptoms which definitely must

be present or absent in order to establish a diagnosis, and the interval [0, 1] is used to

describe the frequency of occurrence of a symptom in a disease. Strength of confirmation

degrees of 1 or 0 are assigned to symptoms which definitely confirm or exclude a diagnosis

and the interval [0, 1] is used to describe the extent to which a symptom confirms a diagnosis.

The rheumatological knowledge base of CADIAG-II was first developed by Adlassnig

and Kolarz as a knowledge base for the CADIAG-I system, and was later modified and

expanded for the CADIAG-II system [4]. It currently contains 170 documented diseases

and 1126 symptoms (261 symptoms of patient history, 519 signs from the general and
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rheumatological physical examination, 183 laboratory test results, 89 X-ray findings, 56

biopsy and histological findings, and 18 other test results). The total numbers of simple and

complex symptom–disease (S–D) relationships are 16,040 and 60.

CADIAG-II/RHEUMA has been evaluated in several studies, both as a complete

consultant system [23], and as a series of evaluations of diagnostic rules that were based

on the 1958 diagnostic criteria for rheumatoid arthritis (RA), and the 1987 revised criteria

for the classification of RA, both published by the American College of Rheumatology

(ACR) [9,25,26].

Apart from CADIAG-II/RHEUMA, and apart from well-known computer consultant

systems in internal medicine such as INTERNIST-I/QMR [11,29] or ILIAD [13,35],

several other systems have been specifically designed to support the differential diagnosis

of rheumatic diseases, including AI/RHEUM [22], RENOIR [12,19], MESICAR [20,21],

RHEUMA [32,33], and the systems designed by Bernelot Moens and Van der Korst

[14,15], McCrea et al. [28], and Mathew et al. [27]. In these systems, different forms of

knowledge representation and inference were used, such as criteria tables [22], modified

Bayes’ theorem [15], decision trees [28], detailed anatomical and functional knowledge

[21], discrimination and connectivity analysis [27], simple if–then rules [32], or fuzzy logic

[12]. In the latter, fuzzy set theory and fuzzy logic are used to define fuzzy facts and to

allow rules to have certainty values.

KA for CADIAG-II/RHEUMA, i.e. the definition of 60 complex, and more than 16,000

simple S–D relationships, proved to be a tedious and time-consuming task. Most of the

work was done by a single domain expert (GK) using a linguistic approach: among a

predefined set of linguistic expressions, the expression that most closely matched the

correct relation between a symptom S and a disease D—for both the frequency of

occurrence and the strength of confirmation degrees—was chosen. During the develop-

ment of the knowledge base for CADIAG-II/RHEUMA, manual KA had already been

partially supported by semi-automatic KA [6]. Semi-automatic KA was done by calculat-

ing all statistical relationships between symptoms and diseases in the patient database of

CADIAG-II/RHEUMA. Results of all statistical calculations were then validated by the

domain expert as proposals for the fuzzy values of the frequency of occurrence and the

strength of confirmation degrees, and were subsequently entered into the knowledge base.

This study sought to demonstrate the variability of results that may be expected when

performing automatic KA for a single disease (RA) in two different patient settings. By

eliminating some of the influencing factors, a consensus could be reached. All remaining

uncertainties about influencing factors that were not yet accounted for, would then be

addressed using expressions of fuzzy set theory.

2. Methods

The patient data used in this study were taken from a large rheumatological patient

database that had been built up during the development of CADIAG-II/RHEUMA. All

patients were treated in a 140-bed rheumatological hospital in Baden, Austria. At the time

of this study, it contained computerized records of 154 patients with RA and 3098 control

patients with other rheumatological diseases.
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The second source of patient data was a publication of the ACR, in which a new set of

revised criteria for the classification of RA were introduced [10]. In this paper, a variety of

symptoms leading to the diagnosis of RA were evaluated in 262 RA patients and 262

control patients from a wide range of university and private practice settings throughout the

US, and all results were displayed in detail.

In both study populations, 2 � 2 tables were calculated for seven symptoms, which were

finally chosen by the ACR as new criteria for the classification of RA, because of their

high discriminatory power between RA and other rheumatological diseases. In all

calculations, symptoms were assumed to be either present, absent, or unknown in a given

patient.

The models of semi-automatic KA developed for the CADIAG-II system were based on

the assumption that relations in CADIAG-II could have statistical interpretations: the

frequency of occurrence degree can be statistically interpreted as P(S/D) and the strength

of confirmation degree as P(D/S). Thus, Bayes’ theorem, as displayed in the upper portions

of Tables 1 and 2, might be used to calculate the probabilities P(S/D) and P(D/S), which, in

turn, may be transformed to fuzzy values.

Bayes’ theorem, in the notation in Table 2, is commonly used to calculate an individual

probability P(D/S), i.e. the probability that an individual patient with a symptom S has a

diagnosis D. P(D), i.e. the prior probability that this individual patient has the diagnosis D

is used as an input variable, whereas the probabilities P(S/D) and P(S/:D) are assumed to

be fixed values and so-called test characteristics. Thus, following Bayes’ theorem as a KA

tool for CADIAG-II/RHEUMA, a set of different fuzzy values, depending on different

prior probabilities P(D), would have to be acquired.

In contrast, knowledge representation in CADIAG-II/RHEUMA followed a different

philosophy: acquired knowledge should be independent of individual predispositions. The

rationale for this approach was that a consultation process should be possible even if either

no, or unreliable, information about the individual patient, for whom the consultation is

done, is available. Another reason not to consider prior probabilities was that even if

reliable background information about a patient is available, estimates of the prior

probability P(D) itself tend to be unreliable.

To emphasize the difference between probability theory and its application in Bayes’

theorem on the one hand, and our model of KA based on calculations with data from a

patient database on the other, we used the notations F(S/D) and F(D/S), where F stands for

frequency, instead of P(S/D) and P(D/S).

Derived from Bayes’ theorem, two models to calculate F(S/D) and F(D/S), with two

different assumptions about the frequencies F(S) and F(D), were used in this study. Both

models were based on the calculation of 2 � 2 tables (listing true positive, false positive,

true negative, and false negative results) to analyze the relationship between a symptom S

and a disease D.

The simpler formulae of model 2 at the bottom of Tables 1 and 2 assume that prior

probabilities are, and should be, exactly equal to those found in the patient data set; in fact,

in those formulae F(S/D) corresponds to the so-called sensitivity rate and F(D/S) to the so-

called positive predictive value. In the more complex formulae of model 1 in the center of

Tables 1 and 2, the frequencies F(D) and F(S) are normalized, thus F(S) is set equal to F(:S),

and F(D) is set equal to F(:D). By normalizing predispositions, their influence on the results
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of the calculations is eliminated; or, arguing from a probabilistic standpoint, the chances that

an individual does, or does not, have a prior probability P(S) or P(D), are set equal.

The calculation of the frequencies F(S/D) and F(D/S) is also influenced by other factors,

among which different definitions of symptoms and diseases, different compositions of the

groups of patients D and controls :D, and different compositions of the groups of persons

with S or :S, are, arguably, the most important ones. By normalizing, and thus eliminating,

prior probabilities as influencing factors, the influence of different definitions of symptoms

and diseases which shift the balances between the groups D and :D, or S and :S, will also

be controlled for. The selection of patients and controls, or symptomatic and asymptomatic

persons, on the other hand, remains the major influencing factor in our model.

Calculations of F(S/D) and F(D/S) were done with both models depicted in Tables 1 and

2. We also calculated F(:S/:D) and F(:D/:S) using equivalent formulae (not shown).

Table 1

Calculation of proposals for the frequency of occurrence degree mO with models 1 and 2, based on numbers of

true positive (TP), false positive (FP), true negative (TN), and false negative (FN) results
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Analogous to the frequency of occurrence degree and the strength of confirmation degrees,

we defined a frequency of non-occurrence degree, mNO, which describes the frequency of

:S in the group of controls and the strength of exclusion degree, mE, which describes the

frequency of :D in the group of asymptomatic individuals. Thus, mNO can be set equal to

F(:S/:D), and mE can be set equal to F(:D/:S). In its simplest form, F(:S/:D) is the so-

called true negative or specificity rate and F(:D/:S), the so-called negative predictive

value. Baseline frequencies F(D) for RA and F(S) for all seven symptoms were also

calculated for both study populations.

We expected sensitivity and specificity rates, and the positive and negative predictive

values obtained in the two study populations to be different from each other—even if the

results were normalized for different baseline frequencies F(S), F(D). This is because the

different composition of patient groups in the two populations were expected to persis-

Table 2

Calculation of proposals for the confirmation degree mC with models 1 and 2, based on numbers of true positive

(TP), false positive (FP), true negative (TN), and false negative (FN) results
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tently exercise a strong influence on the outcome of our calculations. To cope with these

factors that were not accounted for, we decided to use the definition of a fuzzy interval to

describe the remaining uncertainty. Thus, the proposals for mO, mC, mNO, and mE were made

by defining fuzzy intervals in which the limits were set equal to the results obtained with

the calculations using model 1 in both study populations.

3. Results

In Tables 3 and 4, the rates of sensitivity, specificity, and the positive and negative

predictive values, calculated with model 2, and the baseline frequencies F(S), F(D) are

shown for both study populations. The lower baseline frequencies of symptoms and

diseases in our own patient data base, as compared to the ACR study, led to markedly

diminished rates of sensitivity and lower positive predictive values, and to higher

Table 3

Rates of sensitivity and specificity calculated using model 2, and baseline frequencies F(S) in both study

populations

Symptoms ACR study CADIAG-II study

Sensitivity

(%)

Specificity

(%)

F(S)

(%)

Sensitivity

(%)

Specificity

(%)

F(S)

(%)

Morning stiffness for at least 1 h 81.2 57.5 61.9 14.9 96.4 4.1

Swelling of three or more joint areas 90.6 84.2 53.3 70.8 95.4 7.8

Swelling of the PIP, MCP,

or wrist joints

96.6 74.7 61.0 85.1 91.6 12.1

Symmetric joint swelling 94.3 74.3 60.0 81.2 90.6 12.8

Rheumatoid nodules 43.5 97.7 22.9 13.0 98.3 2.3

Presence of rheumatoid factor 80.4 87.0 49.9 37.5 98.6 3.1

Radiographic changes typical

for arthritis

77.3 93.7 44.4 89.0 97.3 6.8

Table 4

Positive predictive values (PPV) and negative predictive values (NPV) calculated using model 2, and baseline

frequencies F(D) in both study populations

Symptoms ACR study CADIAG-II study

PPV (%) NPV (%) F(D) (%) PPV (%) NPV (%) F(D) (%)

Morning stiffness for at least 1 h 65.7 75.3 50.1 16.7 95.9 4.6

Swelling of three or more joint areas 85.2 89.9 50.1 43.1 98.5 4.7

Swelling of the PIP, MCP,

or wrist joints

79.3 95.6 50.1 33.4 99.2 4.7

Symmetric joint swelling 78.7 92.8 50.1 30.0 99.0 4.7

Rheumatoid nodules 95.0 63.3 50.1 27.0 95.8 4.7

Presence of rheumatoid factor 88.2 78.6 54.7 57.6 96.9 4.7

Radiographic changes typical

for arthritis

93.4 78.1 53.7 62.0 99.4 4.7
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specificity rates and higher negative predictive values. This influence did not appear to be

strong in all symptoms, and thus, the question remained as to whether unknown differences

in definitions of symptoms and diseases, based on different concepts of symptoms and

diseases in different hospitals, or the different compositions of patient groups in the two

study populations, were other important factors. In any event, the results obtained with

model 2 in both study populations were too inconsistent to be useful as proposals to define

CADIAG-II/RHEUMA relationships.

In Tables 5 and 6, normalized sensitivity and specificity rates, and the positive and

negative predictive values, calculated with model 1, are shown for both study populations.

Normalization of the baseline frequencies done with the calculations in model 1 helped to

eliminate the bias of different baseline frequencies of symptoms and diseases, and to

control for possible and unknown divergent definitions of symptoms and diseases. Still,

differences in results obtained in the two study populations—although much smaller

now—persisted. Explanations for the differences can be found by having a closer look at

the different study populations. In the ACR study carried out to determine criteria for a

homogenous classification of RA patients for clinical trials, only patients with a definite

Table 5

Normalized rates of sensitivity and specificity calculated using model 1 in both study populations

Symptoms ACR study CADIAG-II study

Normalized

sensitivity (%)

Normalized

specificity (%)

Normalized

sensitivity (%)

Normalized

specificity (%)

Morning stiffness for at least 1 h 72.6 68.7 80.3 53.5

Swelling of three or more joint areas 89.4 85.8 96.6 63.4

Swelling of the PIP, MCP, or wrist joints 94.7 82.2 97.7 59.8

Symmetric joint swelling 91.6 81.3 96.7 58.6

Rheumatoid nodules 72.1 92.6 86.5 56.8

Presence of rheumatoid factor 80.5 86.9 95.0 69.6

Radiographic changes typical for arthritis 81.0 92.2 99.1 72.3

Table 6

Normalized positive predictive values (PPV) and negative predictive values (NPV) calculated using model 1 in

both study populations

Symptoms ACR study CADIAG-II study

Normalized

PPV (%)

Normalized

NPV (%)

Normalized

PPV (%)

Normalized

NPV (%)

Morning stiffness for at least 1 h 65.6 75.3 80.6 53.1

Swelling of three or more joint areas 85.1 89.9 93.8 76.5

Swelling of the PIP, MCP, or wrist joints 79.2 95.6 91.0 86.0

Symmetric joint swelling 78.6 92.8 89.6 82.8

Rheumatoid nodules 94.9 63.3 88.2 53.0

Presence of rheumatoid factor 86.0 81.6 96.5 61.2

Radiographic changes typical for arthritis 92.4 80.5 97.0 89.8

222 H. Leitich et al. / Artificial Intelligence in Medicine 25 (2002) 215–225



diagnosis of RA were included in the RA group. In our database, however, a large

percentage of RA patients were either at an early stage of disease or had already received

disease-modifying drugs—in both cases patients had less pronounced disease features. The

control group in the ACR study included a much larger percentage of patients with other

inflammatory rheumatic disorders compared to the control group of our database, in which

the majority of patients were affected by degenerative rheumatic disorders. For some

symptoms, as a consequence, sensitivity rates in our population tended to be lower and

specificity rates, higher.

In Table 7, fuzzy intervals as proposals for the definition of the frequency of occurrence

and non-occurrence, and the strength of confirmation and exclusion degrees, are shown.

The limits of the fuzzy intervals were set equal to the results obtained with the calculations

using model 1 in both study populations.

4. Discussion

In this study, we showed that characteristics of patient populations, especially the

baseline frequencies of symptoms and diseases, are important factors influencing calcula-

tions to support automatic KA from computerized patient data.

All influencing factors would play a minor role if KA were done in a patient setting that

closely matched the setting in which the consultant system would later be used. This,

however, would be detrimental to the philosophy of an all-purpose consultant system. In

contrast, to follow this philosophy, KA should be done in as many as possible different

patient settings and a consensus between diverging results achieved in these different

settings should be obtained.

Although we successfully controlled for differences in baseline frequencies of symp-

toms and diseases as the most important bias, it became clear that even if we tried to

identify, address, and partly control for some influencing factors, the contribution and

relative importance of all factors in a given example would remain unknown.

Table 7

Proposals for the frequency of occurrence degree mO, the frequency of non-occurrence degree mNO, the strength

of confirmation degree mC, and the strength of exclusion degree mE, based on calculations using model 1 in both

study populations

Symptoms mO ¼ 1; 8x 2 I

0; 8x =2 I

�
mNO ¼ 1; 8x 2 I

0; 8x =2 I

�
mC ¼ 1; 8x 2 I

0; 8x =2 I

�
mE ¼ 1; 8x 2 I

0; 8x =2 I

�

Morning stiffness for at

least one hour

I ¼ [0.72; 0.80] I ¼ [0.53; 0.68] I ¼ [0.65; 0.80] I ¼ [0.53; 0.71]

Swelling of three or

more joint areas

I ¼ [0.89; 0.96] I ¼ [0.63; 0.85] I ¼ [0.85; 0.93] I ¼ [0.76; 0.89]

Swelling of the PIP, MCP,

or wrist joints

I ¼ [0.94; 0.97] I ¼ [0.59; 0.82] I ¼ [0.79; 0.91] I ¼ [0.86; 0.95]

Symmetric joint swelling I ¼ [0.91; 0.96] I ¼ [0.58; 0.81] I ¼ [0.78; 0.89] I ¼ [0.82; 0.92]

Rheumatoid nodules I ¼ [0.72; 0.86] I ¼ [0.56; 0.92] I ¼ [0.88; 0.94] I ¼ [0.53; 0.63]

Presence of rheumatoid factor I ¼ [0.80; 0.95] I ¼ [0.69; 0.86] I ¼ [0.86; 0.96] I ¼ [0.61; 0.81]

Radiographic changes typical

for arthritis

I ¼ [0.81; 0.99] I ¼ [0.72; 0.92] I ¼ [0.92; 0.97] I ¼ [0.80; 0.89]
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As a consequence, the uncertainty as to what should be the ‘‘true’’ values that should be

assigned to the relationships in CADIAG-II/RHEUMA’s knowledge base persisted. The

philosophy of CADIAG-II/RHEUMA, of a consultant system that is independent of any

prior information, motivated us, and the mathematical models to formalize uncertainty in

fuzzy set theory allowed us to follow the solution that all remaining uncertainty can be

expressed as a fuzzy interval that incorporates the entire range of results found in both

study populations. This is also a flexible approach because new information obtained in

other studies can easily be incorporated into the existing knowledge base by adapting the

limits of the fuzzy intervals accordingly.

It should be noted that the present version of CADIAG-II/RHEUMA does not allow the

assignment of fuzzy intervals, but only fuzzy values to relationships between symptoms

and diseases. Also, in its present form, negative evidence, expressed by the frequency of

non-occurrence degree and the strength of exclusion degrees, cannot be included in the

knowledge base of CADIAG-II/RHEUMA. Both concepts, however, were discussed in an

earlier paper [5] and will be part of the development of a KA tool for the ongoing

MEDFRAME/CADIAG-IV project [18].
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